
双12支付宝:以立体的方式凿开线下大数据冰层_数据分析师
2014年双12,网上流量疲软,而3000万大妈狂扫便利店。
看上去又有钱又任性,而其本质,是支付宝O2O落地,是阿里体系立体大数据的开始。
传统连锁零售要么学会与“狼”共舞,善用支付宝,要么,被玩死。
先看“二维”和“三维”:
1传统实体零售是二维平面的;
2传统电商(淘宝天猫)也是二维平面的;
3传统的信用卡支付是二维平面的,主要是银联卡;
4传统的线上支付也是二维平面的,换言之,早期的支付宝也是二维的。
所以,即使双11全网成交额达到571亿、线上消费占5%以上,但阿里巴巴的数据是线上二维的,与现实中的人是割裂的,落不了地。
但O2O是三维的,贯穿三维有几个核心要素:1联接、2会员、3金融,尤其是支付。
再看支付宝,三亿实名用户信息,以网上交易为主,拥有绝大多数网上交易数据,这是宝藏。这三亿人其实都是银行卡用户,换言之,银联的用户。这三亿人也都是网购人群,年轻人为主,社会消费的主力军。但不可否认的是,95%的消费在线下,而线下交易是银联的地盘。
反观支付宝的手机客户端,拥有上亿装机总量,每天的点击量(Daily Active User),不亚于手淘。但是,它只专注于支付。其扩展的“服务窗”(类似微信公众账号),也是媒介,可以等同理解为广告窗口,直接跳转到支付环节的简洁步骤,不啰嗦,没废话。
再看团队基因,阿里系里支付宝团队的服务意识相对较强。
2013年双11,阿里巴巴O2O最有效的积累,是和银泰百货的支付宝合作。尽管声波支付实际效果欠佳,但留给支付宝的是空军落地的宝贵经验。
2014年,京东和阿里抢夺便利店O2O,京东抢的是物流,阿里抢的是支付,个人认为支付宝技高一筹。
京东金融,太弱小,还无法发力。微信支付,还在寻找和丰富其线下的应用场景,姑且不论。
重新评估O2O的几个要素:“支付”作为第四个维度,just follow the money,把“人、货、场、时间”都穿插在一起……
我认为,支付宝真正的意图是:与连锁便利店合作,用低价高频的SKU进行补贴,撬开地面网络,获取地面二维网络的用户和交易数据。
在这种情况下,银联由于其机制原因,已经溃不成军,其反击还需要相当的时间。
所以,支付宝进入线下的第一波,动的是银联的奶酪,但还不是动银行的奶酪。
总结起来,支付宝在双12的收获如下:1从空中进入地面零售网络,形成三维。2获取地网的用户,绑定支付宝,交易信息。3最核心是让用户形成支付习惯,这是最可怕的力量。
相比之下,微信只有联接,没有交易,没有实名会员,微信支付还要跑步前进才行啊。
有个比喻,大象打架,菜园子毁了。有一类公司,会彻底被拍死:拉卡拉式第三方支付。跟不上移动互联网,拉卡拉基本上武功全废。因为商家透过便利店支付宝,会马上知道:原来网上的用户,就住在全家附近啊?原来网上买衣服的用户,线下买85度C的某个面包啊?这种大数据,线上线下交融的大数据,其威力巨大无比……
再回到4个身份:1肉身,2网络匿名身份,3权益身份,4支付身份。支付宝至少得到3个身份。大妈,不太在意权益身份,为了省钱,管它呢。这样支付宝4个身份就都有了。
当然,支付宝没有社交属性,这是微信比它牛的地方,但是支付宝里的社交属性,是强关联。“老子钱都为你花了,人还不是我的吗?”
支付宝,阿里O2O的真正使者。无论喜欢与否,O2O的真正风暴已经来临。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11