
在涂子沛最终说服太太,带着还在上三年级的孩子举家从硅谷迁徙到杭州时,他或许不会想到,这一举动除了将给自己的生活带来翻天覆地的变化外,还带着某种标志性意义。作为《大数据》《数据之巅》两本畅销书的作者,涂子沛在2014年底加盟阿里巴巴任副总裁,从事数据新商业模式的研究。这似乎也预示着,在2015年大数据的发展将会呈现新的发展趋势。
如果说过去的一年里,有什么改变了我们的生活,那一定是科技的迅速变革与推动所带来的变化。2014年云计算成为了香饽饽,领域市场大势爆发,众多企业将眼光望向了云服务领域,同时基于云计算技术而发展的大数据技术,从概念阶段逐渐发展成为新数字时代中的核心技术。
美国著名咨询公司麦肯锡对大数据的定义,是指大小超出常规的数据库工具获取、存储、管理和分析能力的数据集。国际数据公司IDC根据大数据的四个特征,定义其为海量的数据规模(Volume)、快速的数据流转和动态的数据体系(Velocity)、多样的数据类型(Variety)、巨大的数据价值(Value)。
在过去的一年,大数据以惊人的速度从理论迈向应用,成功的推动了各个领域的产业变化与行业融合,当前的现状与未来发展,值得所有行业深刻认识并重视。
2014年大数据应用遍地开花
过去的一年,大数据技术几乎渗透了各个领域的各个行业。
全球关注的2014年巴西世界杯赛事期间,谷歌云计算平台通过大数据技术分析,成功预测了世界杯16强每场比赛的胜利者,而冠军队德国国家队宣布,他们运用了SAPMatchInsights解决方案进行赛后分析,大数据技术成为获胜的关键;8月,联合国开发计划署与百度达成战略合作,共建大数据联合实验室,利用大数据技术针对环保、健康、教育和灾害等全球性问题进行分析和趋势预测,提供发展策略建议;12月,淘宝公布的《2014年淘宝联动知识产权局打假报告》显示,阿里巴巴通过大量数据分析追查打击假货源,2010年至今已处理各类专利侵权投诉案件3000余件。同时,苹果“预留后门”和12306用户信息泄露等事件,也暴露出大数据迅猛发展的同时,数据安全存在很大的隐患。
去年6月,中国科学院大学首次召开了“大数据技术与应用”方向人才培养研讨会,提出人才培养与科研优势结合培养复合型大数据人才,将中国大数据人才教育提上议程,推动相关人才培养,足见未来我国大数据市场的前景广阔。
大数据行业应用愈发完善
在云计算爆发推助智能科技加速发展的一年,2014年大数据产业从理论到应用向前迈进了大大的一步。
2014年12月,中关村大数据产业联盟与中国计算机协会共同发布了 《中国大数据白皮书》,第一次全面深入且系统完整的从我国大数据的产业与学术的大方向,就国家主权、政府政策、产业发展、数据科学、投资理念、公司战略等分析了我国大数据市场当前以及未来发展现状,这是我国大数据行业逐步迈向产业系统化的重要一步。
速途网记者采访了中关村大数据产业联盟秘书长赵国栋,他表示今年众多行业的众多企业从根本上对大数据的认知与需求有了变化,百度、腾讯等互联网巨头公司对数据的重视程度超乎想象,中小企业也随着大潮流的步伐体会到了大数据所带来的产业变化。
赵国栋提出,在随之而来的大数据时代,三大发展理论能够概述2014年大数据的发展:第一,从微观层面上来看,企业战略思想发生了根本变化,以数据资产为核心来重新审视公司的价值也未来走向;第二,从中观层面来看,区域经济发展中产业高度融合,大数据成为了经济发展的新动力;第三,以中间市场为特征的组织变革,推动了产业生态紧密融合。大数据这些层面的发展理论,将演变成新的大数据商学体系。
大数据思潮推动产业全面落地
虽然大数据市场相比前年有了跨越性的发展,然而当前的现状却依然处在初步阶段,除了IT互联网类的大型企业深刻认识并重视研发应用,其他行业的中小企业乃至普罗大众对大数据概念的认识还很微弱,甚至存在误读误解。
赵国栋向记者介绍,大数据是新兴技术发展到一定阶段后,产生一系列社会现象,这是与各行各业都紧密融合的新思潮,是经济发展的新现象,更是推动经济发展的新动力,但社会各阶层对大数据的认知不均,将有可能影响到其市场发展。
另一方面,大数据新兴技术脱离了软件与硬件,将数据进化成独立的发展产业,推助了更多领域的发展。例如正在热议互联网银行,腾讯微众银行的运营系统就是完全依托大数据而成的,从试运营期间的客户选择,到客户的经济社交、信用度与贷款额度,完全通过大数据进行分析和信息筛选,最后得出准确的征信报告。其次,各个城市政府正在大力推行的智慧医疗、智慧交通与智慧教育,都依托于大数据技术的基础而建设。
2015年,大数据独立的发展将形成特有的市场化于规模化,全面落地的技术建设,从产业到行业的成熟,将推动更多传统企业向科技智能化转型,也将推动更多新产业和市场的爆发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07