京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在涂子沛最终说服太太,带着还在上三年级的孩子举家从硅谷迁徙到杭州时,他或许不会想到,这一举动除了将给自己的生活带来翻天覆地的变化外,还带着某种标志性意义。作为《大数据》《数据之巅》两本畅销书的作者,涂子沛在2014年底加盟阿里巴巴任副总裁,从事数据新商业模式的研究。这似乎也预示着,在2015年大数据的发展将会呈现新的发展趋势。
如果说过去的一年里,有什么改变了我们的生活,那一定是科技的迅速变革与推动所带来的变化。2014年云计算成为了香饽饽,领域市场大势爆发,众多企业将眼光望向了云服务领域,同时基于云计算技术而发展的大数据技术,从概念阶段逐渐发展成为新数字时代中的核心技术。
美国著名咨询公司麦肯锡对大数据的定义,是指大小超出常规的数据库工具获取、存储、管理和分析能力的数据集。国际数据公司IDC根据大数据的四个特征,定义其为海量的数据规模(Volume)、快速的数据流转和动态的数据体系(Velocity)、多样的数据类型(Variety)、巨大的数据价值(Value)。
在过去的一年,大数据以惊人的速度从理论迈向应用,成功的推动了各个领域的产业变化与行业融合,当前的现状与未来发展,值得所有行业深刻认识并重视。
2014年大数据应用遍地开花
过去的一年,大数据技术几乎渗透了各个领域的各个行业。
全球关注的2014年巴西世界杯赛事期间,谷歌云计算平台通过大数据技术分析,成功预测了世界杯16强每场比赛的胜利者,而冠军队德国国家队宣布,他们运用了SAPMatchInsights解决方案进行赛后分析,大数据技术成为获胜的关键;8月,联合国开发计划署与百度达成战略合作,共建大数据联合实验室,利用大数据技术针对环保、健康、教育和灾害等全球性问题进行分析和趋势预测,提供发展策略建议;12月,淘宝公布的《2014年淘宝联动知识产权局打假报告》显示,阿里巴巴通过大量数据分析追查打击假货源,2010年至今已处理各类专利侵权投诉案件3000余件。同时,苹果“预留后门”和12306用户信息泄露等事件,也暴露出大数据迅猛发展的同时,数据安全存在很大的隐患。
去年6月,中国科学院大学首次召开了“大数据技术与应用”方向人才培养研讨会,提出人才培养与科研优势结合培养复合型大数据人才,将中国大数据人才教育提上议程,推动相关人才培养,足见未来我国大数据市场的前景广阔。
大数据行业应用愈发完善
在云计算爆发推助智能科技加速发展的一年,2014年大数据产业从理论到应用向前迈进了大大的一步。
2014年12月,中关村大数据产业联盟与中国计算机协会共同发布了 《中国大数据白皮书》,第一次全面深入且系统完整的从我国大数据的产业与学术的大方向,就国家主权、政府政策、产业发展、数据科学、投资理念、公司战略等分析了我国大数据市场当前以及未来发展现状,这是我国大数据行业逐步迈向产业系统化的重要一步。
速途网记者采访了中关村大数据产业联盟秘书长赵国栋,他表示今年众多行业的众多企业从根本上对大数据的认知与需求有了变化,百度、腾讯等互联网巨头公司对数据的重视程度超乎想象,中小企业也随着大潮流的步伐体会到了大数据所带来的产业变化。
赵国栋提出,在随之而来的大数据时代,三大发展理论能够概述2014年大数据的发展:第一,从微观层面上来看,企业战略思想发生了根本变化,以数据资产为核心来重新审视公司的价值也未来走向;第二,从中观层面来看,区域经济发展中产业高度融合,大数据成为了经济发展的新动力;第三,以中间市场为特征的组织变革,推动了产业生态紧密融合。大数据这些层面的发展理论,将演变成新的大数据商学体系。
大数据思潮推动产业全面落地
虽然大数据市场相比前年有了跨越性的发展,然而当前的现状却依然处在初步阶段,除了IT互联网类的大型企业深刻认识并重视研发应用,其他行业的中小企业乃至普罗大众对大数据概念的认识还很微弱,甚至存在误读误解。
赵国栋向记者介绍,大数据是新兴技术发展到一定阶段后,产生一系列社会现象,这是与各行各业都紧密融合的新思潮,是经济发展的新现象,更是推动经济发展的新动力,但社会各阶层对大数据的认知不均,将有可能影响到其市场发展。
另一方面,大数据新兴技术脱离了软件与硬件,将数据进化成独立的发展产业,推助了更多领域的发展。例如正在热议互联网银行,腾讯微众银行的运营系统就是完全依托大数据而成的,从试运营期间的客户选择,到客户的经济社交、信用度与贷款额度,完全通过大数据进行分析和信息筛选,最后得出准确的征信报告。其次,各个城市政府正在大力推行的智慧医疗、智慧交通与智慧教育,都依托于大数据技术的基础而建设。
2015年,大数据独立的发展将形成特有的市场化于规模化,全面落地的技术建设,从产业到行业的成熟,将推动更多传统企业向科技智能化转型,也将推动更多新产业和市场的爆发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06