京公网安备 11010802034615号
经营许可证编号:京B2-20210330
淘宝网店从激活到挽留,4步走玩转数据营销_数据分析师
数据营销的核心就是基于用户数据对用户进行针对性营销。基于数据库的营销一般分几种类型:注册的未产生购物车、产生购物车未生成订单、生成订单未付款、无第二次购买、无重复购买、收藏夹用户。基于这些基础的用户数据,我们就可以将用户分类成多种用户群进行用户营销。如果是注册用户并且完成登录的,而自己的系统日志系统做的比较好,那还可以采集到用户的商品浏览信息。
有了这些数据基本可以完成相关的数据销售动作。大体可以分成三步:激活新用户、完成订单付款、防止用户流失。先根据业务的流程分析下用户的生命周期,从引流开始到离开。一般的流程是这样的:引流、注册、购物车、订单、付款、重复购买、体验服务、流失。这样的流程中,只要增加任何一个点的转化率,都可能增加销售。
新用户的增量是衡量一个网站潜力的非常重要的因素。按照用户的贡献来计算的话,用比较粗暴的方式来算,就是:人均贡献额=总的销售额/总的消费人数=总的销售额/总的注册人数/注册消费转化率。
对一个稳定的网站,他的风格、商品价格、商品品质、引流渠道是一定的,基本就确定了网站的目标群体在哪里。进一步看,网站内部的转化率(从注册激活,付款率,重复购买率)这些数据也基本都是稳定。除非你修改了一些购物流程,支付流程和商品陈列等东西,否则变化不会太大。基于这样的假设,那你的总注册人数就是个很关键的指标。(PS:如果你想不通,看看淘宝的注册用户增长和销售增长的曲线,这就是用户红利。)
当用户完成了注册时,你就有了相关的联系方式,一般的都是邮箱,有更清晰的会有电话。如果是社交类登陆的话,会更好,这样的消息推送的成本低点。新注册未产生销售的用户,一般的做法是用折扣信息来完成首单来完成。原因很简单,有时候折扣可能会让你首单亏本,但是你有了以下信息:用户的联系方式,具体收货地址(很可能就是他的生活的地方,用作区域营销用),而更重要的是首单体验,这个非常重要,就像走过一次的路,下次再走比较容易。而对整个购物流程来说,完成一次购买最复杂的地方是折扣。
催付分两个部分,一般的购物流程分选择、支付两块:支付部分有的是从收藏开始,到购物车、到订单,有的直接从未付款订单开始。这个取决于自己的系统,只要记录了相关的数据,对未付款订单进行简单的催付即可。(当然,如果你感觉真不够可以送点福利过去)。催付只需要控制时间即可,比如1天、7天、30天进行催付,对应不同的策略,1天只是提醒、7天送积分、30天送现金券之类。
也可以对不同级别的用户进行催付,用户的分类就是累积消费金额较高、最近频次比较多的、单个订单金额较大的,这样对应的催付可以设置不同的现金券。催付的渠道也可以设置,比如利用聊天软件、短信、邮箱、我的账户完成。
购物车的部分是快速生成订单并完成支付,用相关的折扣券效果比较好,还可以利用恐吓式营销。比如购物车商品的提价,针对那些购买了一些特价商品的。比如下架,当有些商品库存较少时,提醒就要下架,马上要其付款。
还有个部分是是收藏列表,收藏列表一般的作用是什么?无外乎几点,1.关注的商品,想要的。2.比较,已经大体的方向,选几个商品进行比较价格,款式等。从这个里面大体可以分出几个点:类目偏好,价格偏好。有了这些点,可以做一个很牛的动作,对收藏比较多的某类、某个商品做整体促销,设计价格折扣,然后再根据目标人群再进行相关的调整。
购买过1单的用户已经对你的网站有了基本的了解。从网站购物,到支付、收货,及相关商品的质量,有了初始印象,就可以进行相关的用户分群营销了。基本的用户群可以分成以下几种:
1.类目偏好。或者更准确的说是商品偏好,这个用户只在你这个网站卖的商品,比如我比较喜欢在淘宝买小玩意,在当当买书,在米兰网买服装,每个人对每个网站买什么一般都有固定的偏好。特别是经常网上购物的。可以从网站浏览的商品、收藏、购物车、购买的商品就基本可以分析出来。
2.价格偏好。从类目的价格分布和购买、点击的商品的价格进行对比,基本能分析出用户的价格偏好。还有使用折扣券的情况,积分的情况,这是利用现有折扣进行的。例如,如果有人对商品价格敏感的,就完全可以使用运费的费用调节;再比如,运费是服务范畴,而商品是实物范畴,有很多人喜欢付10块钱的运费买20块的商品,这是买服务。而你直接30块包邮的话,他就感觉贵了。这些需要一些价格的AB测试,目的是测试用户看重的是商品,还是服务。
3.节假日偏好。这种偏好的人是比较懒的。节假日偏好只所以产生是无外乎几点:1.节假日会做一些打折,往往折扣力度比较大。2.商家会把相关的商品按照各种主题准备好,然后划分各个类型。有了这两点,商品好找,又打折,自然有很多懒人在等待。这种人往往是前两种的结合体,而刚好节假日满足了它们的诉求,所以有了这样的群体。可是商家惯用的伎俩就是提价打折,尾货处理等。运气好可能碰到商家是用流行品做引流做活动的。
挽留是指原来购买的用户不再购买了,对用户进行的挽留式营销。一般会有1月,3月,6月的做法,不同的品类和平台对应的时间不同,换句话说就是不同的类目和平台的用户生命周期不一样。类似淘宝服装类的女性用户一般会比淘宝服装的男用户活跃,1个月不登陆女性用户可能就流失了,男性用户可能是正常的。所以,这个可以根据平台和类目的属性进行考虑。
我们可以设定一个大概的阈值,当超过了某个设定值后,就要做挽留措施了。挽留措施一般是推荐新品、积分使用、折扣券提醒、相关的挽留活动。对于那些平台数量比较大的,可以设置挽留用户的专区进行营销,主要方式是不同分群的用户,用对应的高质量的商品进行吸引,然后利用对应的折扣、服务等去换回,这样会比较精准。
还有比较犀利的做法是积分直接兑换现金券进行消费,积分到消费比较远,如果直接兑换现金券,会让人觉得变现,而增加粘性。想想微信红包,直接发红包导致了几百万的银行卡绑定,还是说明有这样的心理的人是很多的。
针对用户的数据营销一般是分上面几步了,上面分享的是几个思路,主要的是根据用户的生命周期进行设计,具体实施可以根据不同的平台类型来实施,因为大家的商品结构不一样,价格区间不一样,对应的用户人群也会很大的差异。这样具体实施的商品选择,用户分类、主要的方式都需要根据自己的情况而定,基本的就是用户、商品这两块要搞清楚。不管是用商品分析到用户分析,还是用户分析到商品分析来做,最后肯定是两块都比较熟悉,才能比较完整的控制营销。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22