京公网安备 11010802034615号
经营许可证编号:京B2-20210330
关于优质数据报告的三大准则_数据分析师
作为数据分析师,报告的写作是基本功,也是最终呈现的主要内容之一。本篇来讨论下什么是市场和品牌层面的“优质报告”,供各位在写作中参考,也为了后面讨论更深的内容打个基础——对于文科生来讲,从内容进入数据维度是比较好的思路。
市场、品牌层面的数据报告分为很多种,比较常见的是行业整体的报告和垂直领域的报告,前者规模一般比较大,如CNNIC的《中国互联网络发展状况统计报告》和一些咨询公司、市场研究机构发布的年度报告等,从数据上看,这些报告往往有通盘的考虑和固定的周期;后者相对小型,切入点以微观视点为主。当然这都是相对而言,因为垂直领域也会有整体性的报告,重点在于报告要解决的是什么问题。
因为原则是相通的,所以本文的例子有各种报告。
一个报告最重要的价值,就是分析出一个行业的趋势,从数据层面提出意见。而趋势的核心是“变化”——新生、增长、衰退、消失,等等。“提出新的观察范畴”即对变化的把握。
示例:BCG《中国数字化新世代3.0——未来的网络领军者》中国数字化新世代3.0:未来的网络领军者.pdf
这篇报告最出色的地方莫过于点亮了“农村群体”和“年长者群体”这两个观察范畴。
新的观察范畴/对象,是几个基础指标结合后出现的、之前未曾观察到的群体。由这份报告来看,基础指标为:年龄,居住地区,网络使用情况(使用时长,使用者在人群中的比例,网络渗透率等),都是一些常规的数据维度,但它们的组合却指向了深刻的洞见——以前非行业目标的“农村居民”和“年长者”,应该受到重视了。
这两个群体进入观察视野,对社交网站、互联网广告、电子商务等行业有现实意义,背后紧跟着用户拓展、电商网站的商品规划、广告精准投放、网络服务和产品设计等一连串问题。
这就是趋势报告最高的价值体现:提出一个新的观察范畴,为整个产业创造意义,可能带动后续一系列媒体、机构、企业的跟踪和投入。而这个范畴本身又为作为咨询公司的BCG开拓了一个新的市场空间,充实了咨询企业的方法论。从这些意义上看,此报告绝对是一篇市场层面的上乘之作。
跨行业比较,使用好了的话,是一步非常高明的棋。这种比较将给予自身的行业/业务一个快速、明确的定位,并展现出它的前景与机会。而这正是市场、品牌报告的所要解决的问题。
Mathematica软件之父Stephen使用Wolfram|Alpha Personal Analytics for Facebook(基于Mathematica进行个人Facebook数据分析的服务),基于Facebook用户贡献的数据,进行的一系列研究。其中,他将Facebook呈现出的婚姻状况与美国人口普查的官方数据进行了对比,发现Facebook上20岁以下的用户和寡妇有“谎报”已婚的倾向,同时,Facebook上的用户结婚的年龄比官方统计的结婚年龄要晚,但只考虑城市的话,两者更为相近。于是得出结论:对于美国年轻人来讲,Facebook这一样本显著性很高。
这个简单的跨行业比较,体现出Personal Analytics for Facebook这项服务的价值和准确性所在。
这篇的其他分析也非常有见地,建议大家认真看完。
示例2:友盟《移动应用争夺春晚期间用户注意力》移动应用争夺春晚期间用户注意力
友盟是一家移动应用数据公司,提供应用内统计分析、移动互联网广告网络、移动应用社会化分享等工具,帮助开发者进行应用开发、数据统计,并移动广告服务等。友盟定期发布行业大报告,不定期发布垂直领域分析。这篇是后者,事件型的报告。它目的很明确:借春节和春节联欢晚会的契机,突出移动互联网在广告领域的价值。
报告将用户的移动互联网行为(启动APP的次数)与电视行为(春晚节目单)对比,通过零点报时和春晚前十分钟的手机使用情况,强烈的表明,手机APP作为广告媒介,在关键事件时,拥有巨大的投放空间和投放价值;它远比电视广告便宜,但可能价值不逊于电视广告,甚至可能收获更好的效果。
诸如此类的跨行业比较,对突出(报告自身所在的)行业优势有很好的效果。它比传统公关事件和文章更有数据上的说服力,也让市场和潜在用户深刻的认识到其业务的核心内容,令报告本身有了更强的参考意义。
示例:Millennial Media月度S.M.A.R.T.报告(以2013年6月份的为例)mm-smart-jun-2013.pdf
Millennial Media是一家移动互联网广告公司,其SMART报告每月一期,针对不同的移动广告垂直领域进行分析。整体上看,SMART报告都遵循着一定的模式,如广告主目标分析、受众人群分析,以及定期的垂直领域市场规模排名等。
因为是移动互联网广告公司,对Campaign效果的评估就十分重要,而对Campaign的评估,来自对“广告主的目标”和“最终用户反馈”之间的映射的观察。
因此,你可以在SMART报告中看到对【Advertisers’ Campaign Goals】的分析,以及对【Post-Click Campaign Action】的分析。通过这二者的对比,就可以直观的看出Campaign成果如何。
此外,SMART也提供了餐饮行业广告主的【Post-Click Campaign Action】与全行业的对比,可以帮助广告主调整后续策略。
【Top Audiences Engaging with Restaurant Ads】的分析,则给出了最易受餐馆广告影响的最终用户类型。这对广告主策略的改进也是非常重要的。
这就是所谓“紧贴业务模式的维度设计”的体现。它们无疑比“移动广告覆盖智能设备TOP 10”、“手机与平板的流量比例”、“XX领域受众男女比例”要高明一些——不是说这些数据不重要,而是,它们与业务的相关性太低。想想看,如果你是广告主,看到Millennial Media的分析报告,会不会感受到它对广告主需求的把握?会不会被它的服务吸引?结论显而易见。
在我看来,一份优质的报告,以上三点均不可少。不过,这并非易事,因为每一点背后都意味着更多的功课:
先说第三点,紧贴业务模式的维度设计,要求你对自己的业务非常了解,包括报告的受众、服务的主要客户、数据来源和基本的数据点,统计中误差如何生成、怎样避免,等等等等;
然后是第二点,有意义的跨行业比较,要求你对相近的行业有所了解,保证比较的意义;
最后是第一点,提出新的观察范畴,这是对行业整体及相近行业深入了解后才可能有的洞见。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06