京公网安备 11010802034615号
经营许可证编号:京B2-20210330
首先,大环境不尊重数据,尤其是老板的态度。如果数据分析师只要随便给一个报告就行,数字多一点和少一点,大家也是一笑而过,并不会追根到底,那么很难让数据分析师以严谨的态度对待数据。例如,国内这几家数据分析机构,基本都在着急扩张行业,争着占领行业,对于其推出的数据有多精准却不那么在意,所以艾瑞的数据最近才会经常被人说“不靠谱”。数据分析,今天做得不准,明天再改是没有用的。比如艾瑞,如果数据不稳固,抢着做很多行业,这是不靠谱的做法,指不定哪天砸了自己的牌子。有人和我提过FACEBOOK数据分析师为什么那么牛,因为他们不觉得数据分析是一个苦事,十几个人在一个房子里把数据分析当做一件很开心的事情来做,数据分析对于他们来说是在追求科学。
第二,好的数据分析师需要一点天分,同时也需要高人点拨,但是电子商务这个圈子,真正懂数据分析的人不会超过10个,所以一般人很难取得真经。这和信仰一样,没有师傅领进门,难度也会大很多。我回顾自己从微软到易趣,再从敦煌到支付宝,在数据分析上有一次长足的进步,得益于从两位老师的身上得到了许多启发。一位是亚马逊的首席科学家韦思康,曾经,我告诉韦思康,KPI报告显示敦煌网需要4秒钟,他立马让我叫来做技术的同事(他要听到一线同学的反应),问这个4秒钟怎么测算出来,是美国人打开用4秒钟,还是英国人打开用4秒钟,用的是甚么Browser等等。这个4秒钟和商业价值(例如交易量)有关系吗?我当时很触动,连这么一个很基础的数据,他都是以求证的心态来分析的。更令我印象深刻的是,只请他当敦煌网顾问半天,按照他的工作经历来说,随便忽悠我半天是很容易的事情,但是韦思康非常严谨,先是以一个普通人的身份花了半个小时在敦煌网买东西(坚决要真实付钱),切身体会敦煌网的用户体验,然后也不先看数据,而是先问很多能更了解敦煌网的生意形态的问题。讲真他的问题比很多投资分析师来得专业。而现在许多数据分析师,包括当时我自己,只看数据就开口说问题,不深入去体会公司的商业形态。韦思康告诉我数据是一种态度,让我明白做数据的人就是要全身心投入,好像一种信仰一样,中间有许多路要走;而且,数据与商业密切相关,不能局限在数据的死角里。另一位是清华大学的教授谢劲红,有一个夏天碰巧去旁听他的课,拿一堆的数据给他看,他一边看一边给我演绎他的思维,他可以很快在一堆数据找到他们之间的关系。后来我带着团队常常去清华找他聊,他教我如何看网络数据,用联动的思维来看网络数据。可以说是他启蒙了我用 “关系”的思维看数据。一听完就回到敦煌跑到敦煌看很多数据,发现了新世界。
第三,数据分析师感叹落不了地,只能谈数据,而不懂商业。如果不懂商业,而单纯看数据,不仅很难有创意的思维,而且是没有意义的。而对于一般的数据分析师来说,大部分人没有系统思维,而且也只能看一部分数据,无法从大面儿上了整个公司的运营数据,这样就令数据分析师难以形成全面的思考方式。以我自己的工作经历来举例,为什么我在敦煌的时候数据分析能力会突飞猛进,也是因为我在前两家公司只能看到一部分数据,而到了敦煌之后我爱看什么就看什么,受谢教授启发之后我更是天马行空地把营销数据、市场数据、财务数据、产品数据、卖家和买家数据等等联动起来看,这大大改变了我对数据的运用方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07