
销售商与使用者:谁是大数据真赢家_数据分析师
大数据一词最近几年热度不减,越来越多人谈论它,越来越多的公司开始在其中进行投资。
职业社交网站LinkedIn最近发布的一份针对其3.3亿用户档案分析报告显示,在2014年最热门的25项职业技能中,排名榜首的就是“统计分析和数据挖掘”。考虑到万物互联、云计算、智能设备、机器学习等不断涌现的科技潮流词汇以及由此积累的庞大数据,与大数据紧密相连的数据科学家受到职场热捧也就不难理解了。
从薪酬的角度来看,美国一项调查显示,2014年,数据科学家的平均年薪是12.3万美元,比上一年有大幅上升。Cloudera公司联合创始人、董事长、首席战略官Mike Olson在接受笔者采访时表示,该公司举办的认证培训已有5万多个学员,而在职场上,拥有一年Hadoop(一种大数据技术平台)经验的人,工资大概会增加14000美元。
事实上,类似Cloudera这样的大数据技术创业公司正是这一轮技术热潮的弄潮儿。Mike Olson称,自2008年创立以来,目前公司已有1300多家客户,估值超过50亿美元。
然而,如果谈及大数据赢家,这类大数据技术公司还不是其中的执牛耳者。
在中国,也有越来越多的公司将从大数据中获益。新年伊始即因李克强总理前来视察,并发出第一笔贷款业务而一炮走红的微众银行,就将是一个大数据的重度使用者。微众银行的整个服务均依托于互联网,其大数据系统汇集了40万亿条数据信息,从而在征信、担保等方面能获得与传统银行不一样的竞争力。
大数据应用的源起可以追溯到Google在2004年前后发布的三篇论文——MapReduce、Bigtable、GFS。在此基础上搭建的开源平台Hadoop,堪称全球大数据生态圈中最为核心的技术之一。
然而,由非营利组织管理的Hadoop平台,尽管推行开源模式,但企业并不是拿来就可以用,它需要经过进一步的加工和修缮,由此孕育了多家大数据商业开发公司,如Cloudera、MapR、Hortonworks等。这些公司的商业模式就是开发商业化的Hadoop分发版,并对外销售。
Cloudera、MapR、Hortonworks由此也被成为Hadoop市场的三驾马车。其中,Cloudera估值50亿美元,MapR在其最近一轮融资中估值超过7亿美元。而Hortonworks则在2014年12月实现了IPO,以每股16美元的价格发行了625万股股票,募集约1亿美元资金。按照1月5日收盘价26.14美元计,目前其市值为10.7亿美元。
在大数据生态圈中,这些销售Hadoop解决方案的大数据技术创业公司一直是聚光灯的焦点。他们毫无疑问是大数据赢家,得到风投和资本市场的垂青。
不过,如果从估值、股价表现和增长速度来看,应用型的大数据厂商似乎比这些技术型、基础设施层级的公司要更胜一筹。他们中的代表性企业包括Tableau、Qlik和MicroStrategy,其共同特点都是让数据变得更容易理解和消费。
比如说,Tableau成立于2003年,创始人是来自斯坦福的三位校友,三人都对数据可视化怀有很大的热情。数据可视化就是让枯燥的数据以简单友好的图表形式展现出来,是对数据分析的结果呈现。这家公司在2013年5月在纽交所上市,发行价31美元,募集资金2.542亿美元。根据1月5日收盘价84.74美元计算,目前其市值为58.8亿美元。
应用型厂商如果独辟蹊径,抓住一个细分市场做深做透,其市场价值将有很大的想象空间。这一点对于国内的大数据创业企业来说,更有参考意义。事实上,由于基础数据和操作系统的缺失,国内软件企业在传统计算时代亦是在应用层面才有所突破。
当然,如果仅是停留在服务提供商的角度来理解大数据,很显然无法完整理解这个市场——目前各类大数据厂商排名基本上都是基于这个维度。事实上,除了前文提及的两类大数据公司外,更加值得一提的是使用大数据的企业,他们堪称大数据的最大赢家。
目前全球估值超10亿美元的未上市科技企业(过去三年有风投注资)中,排名前十的几乎都是使用数据方面的能手。
其中,排名第一的小米,在最近一轮10亿美元融资中估值达450亿美元,其董事长雷军就在不久前接受媒体采访时直言:“如果我们不能用大数据技术转化出价值,那我们公司再撑下去就真的破产了……现在我扛得住,明年我也扛得住,后年我也扛得住,大后年要没价值的话,那我就破产了。”
排名第二的Uber估值412亿美元。一个打车软件之所以能获得这么高的估值,其背后的支撑亦离不开大数据。它能实时满足人、车、物的流动,用最少的车,实现最有效率的解决。而其平台上日积月累的人流、车流数据,在将来的货币化上则更具有想象空间。
从这个角度来看,真正高价值的大数据公司,或者说真正从数据中赚到大钱的公司,并不是那些销售Hadoop的公司。这些公司的特点是将数据视为一种资产。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16