京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据对人力资源显示人性一面_数据分析师
在进入到互联移动时代之后,因为我们因为互联网、物联网等等的驱动产生的结构化和非结构化海量的数据,今天的报告就从大数据的视角来切入。
大数据也是有人性一面的,对人力资源有什么样的影响呢?第一章重点谈一下三家机构的报告,这是非常振奋人心的,因为带来了新的变化,新的工作的岗位和职位。这也代表了未来的机会。
2015年企业数据是核心的资产,包括一些企业设置所谓的CDO的组织。IDC另外一分报告,最终所有的大数据必须经过业务需求导向分析运用产生出价值,这是推动人才培养上很重要思考的方向。另一份研究报告也谈到所谓的数据科学家,这在市场上也会产生很多新的工作岗位,这是在人力资源方面,因为大数据而带来的正面的宏观性的影响。
SAS公司针对超过全球两千多位企业管理者做的深入的访谈之后,归结出来进入大数据时代,对于企业竞争力的提升是来自于分析型的企业文化,是远胜于一般的数据管理和技术层面的影响力。企业文化最终是以人为本形成的,当我们有分析导向的企业文化之后,人才的招聘、选拔、培养一直到保留都要贯穿这样分析的概念,让我们从各个阶段的人力资源战略里都数据中挖掘出更有价值的洞察力可以结合在一起。
拿两个成功的企业来做分享。第一是COACH,它的成功关键之一是人力资源的组织规划下之下总部有一个战略分析的智囊团,它的负责人和首席战略官就是市场营销的负责人,从战略的订立到市场的分析技术的结合到第一线市场营活动是高效的整体性管理。而且打破了智能和部门的障碍,让战略的专家和分析技术的人员结合在一起,大家可以激荡出更多的火花,激发出更多的潜力。
第二是沃尔玛,它在全球是零售业的领导者,他们对互联网进入新的移动互联的时代很关注,据他们的统计每周在社交媒体上有超过三十万笔的信息会提调到沃尔玛,他们总市场部门到人力资源管理部门非常重视,如何运用大数据协助来做好公司品牌形象的建立以及人才的招聘。沃尔玛一年全球的招聘是50万名员工,要达成这样的任务必须运用新的科技手段,结合了对客户行为分析的技术,转化为人力资源对人力的招聘和培养。
重点是沃尔玛在人力资源部门对于分析数据团队,跟过去不管是财务管理、风险以及市场营销部门的分析技术团队是同样的重要。
SAS公司实际的经验,我们是关注在商业分析、数据挖掘领域的全球领导者,IDC调查我们占了35%的市场份额,我们在创办之初CEO就下了决心,要打造出一个最优良的工作环境,我们内部的战略很重要的是如何发展成最好的工作的环境,在《财富》杂志做全球最佳雇主的评选时我们就入选了,连续16年入选最佳雇主。过去五年是维持在前三名,2013年、2014年是排名在Google之后的第二名。
全球的布局下各国的分支机构也把人才的培育、员工的满意度、忠诚度列入重要的KPI的指标。我们在各地也尽力的建立良好的环境去吸收和培养更好的人才,当我们的员工感觉是最佳的雇主的环境,对我们的向心力也更加强了,这也是新的变局中吸引留住人才的可以参考的。
我们希望有快乐的员工确保有满意的客户,最后回馈到我们的员工和客户身上之外,很重要强调工作和生活的均衡。我们有各种不同的体制和环境的配置,包括总部工作环境是有托儿所、健身中心、医院、学校,让我们的员工没有后顾之忧,可以把工作全力以赴做好,但是家庭也可以兼顾到,这是我们公司最大的努力方向。
人才战略的布局也有长远的考虑,对于在学术教育方面做出很多的付出,包括对学术界除了各种软件的捐赠、培训的计划合作之外,我们在中国跟北大、清华、人民大学、厦门大学等等超过一百所高校做了合作,这对我们有很大的意义,一方面培养了自己需要招聘的人才,把校园人才提前延伸出去,培养了未来员工的人才,也帮客户培养了很多人才,举个例子,我有机会拜访一些重要客户的领导,有些客户说到,我在大学研究生论文就是由你们SAS完成的,对我们有深厚的情感。对于学术教育的投入是进入一个新时代还是值得我们企业去参考的,它是人才战略部署很长远很关键深远的影响。
最后分享一句话我们的CEO谈到,如果坚信员工可以改变世界,他们必将改变世界!当我们作为一个企业的领导团队,对我们的员工有这样的信念,而且把这样的热情传递给他们,一定可以激发出他们的潜能,做好对客户的服务,这是我们在人才战略发展上的非常关键的所遵循的宗旨,
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23