
大数据对人力资源显示人性一面_数据分析师
在进入到互联移动时代之后,因为我们因为互联网、物联网等等的驱动产生的结构化和非结构化海量的数据,今天的报告就从大数据的视角来切入。
大数据也是有人性一面的,对人力资源有什么样的影响呢?第一章重点谈一下三家机构的报告,这是非常振奋人心的,因为带来了新的变化,新的工作的岗位和职位。这也代表了未来的机会。
2015年企业数据是核心的资产,包括一些企业设置所谓的CDO的组织。IDC另外一分报告,最终所有的大数据必须经过业务需求导向分析运用产生出价值,这是推动人才培养上很重要思考的方向。另一份研究报告也谈到所谓的数据科学家,这在市场上也会产生很多新的工作岗位,这是在人力资源方面,因为大数据而带来的正面的宏观性的影响。
SAS公司针对超过全球两千多位企业管理者做的深入的访谈之后,归结出来进入大数据时代,对于企业竞争力的提升是来自于分析型的企业文化,是远胜于一般的数据管理和技术层面的影响力。企业文化最终是以人为本形成的,当我们有分析导向的企业文化之后,人才的招聘、选拔、培养一直到保留都要贯穿这样分析的概念,让我们从各个阶段的人力资源战略里都数据中挖掘出更有价值的洞察力可以结合在一起。
拿两个成功的企业来做分享。第一是COACH,它的成功关键之一是人力资源的组织规划下之下总部有一个战略分析的智囊团,它的负责人和首席战略官就是市场营销的负责人,从战略的订立到市场的分析技术的结合到第一线市场营活动是高效的整体性管理。而且打破了智能和部门的障碍,让战略的专家和分析技术的人员结合在一起,大家可以激荡出更多的火花,激发出更多的潜力。
第二是沃尔玛,它在全球是零售业的领导者,他们对互联网进入新的移动互联的时代很关注,据他们的统计每周在社交媒体上有超过三十万笔的信息会提调到沃尔玛,他们总市场部门到人力资源管理部门非常重视,如何运用大数据协助来做好公司品牌形象的建立以及人才的招聘。沃尔玛一年全球的招聘是50万名员工,要达成这样的任务必须运用新的科技手段,结合了对客户行为分析的技术,转化为人力资源对人力的招聘和培养。
重点是沃尔玛在人力资源部门对于分析数据团队,跟过去不管是财务管理、风险以及市场营销部门的分析技术团队是同样的重要。
SAS公司实际的经验,我们是关注在商业分析、数据挖掘领域的全球领导者,IDC调查我们占了35%的市场份额,我们在创办之初CEO就下了决心,要打造出一个最优良的工作环境,我们内部的战略很重要的是如何发展成最好的工作的环境,在《财富》杂志做全球最佳雇主的评选时我们就入选了,连续16年入选最佳雇主。过去五年是维持在前三名,2013年、2014年是排名在Google之后的第二名。
全球的布局下各国的分支机构也把人才的培育、员工的满意度、忠诚度列入重要的KPI的指标。我们在各地也尽力的建立良好的环境去吸收和培养更好的人才,当我们的员工感觉是最佳的雇主的环境,对我们的向心力也更加强了,这也是新的变局中吸引留住人才的可以参考的。
我们希望有快乐的员工确保有满意的客户,最后回馈到我们的员工和客户身上之外,很重要强调工作和生活的均衡。我们有各种不同的体制和环境的配置,包括总部工作环境是有托儿所、健身中心、医院、学校,让我们的员工没有后顾之忧,可以把工作全力以赴做好,但是家庭也可以兼顾到,这是我们公司最大的努力方向。
人才战略的布局也有长远的考虑,对于在学术教育方面做出很多的付出,包括对学术界除了各种软件的捐赠、培训的计划合作之外,我们在中国跟北大、清华、人民大学、厦门大学等等超过一百所高校做了合作,这对我们有很大的意义,一方面培养了自己需要招聘的人才,把校园人才提前延伸出去,培养了未来员工的人才,也帮客户培养了很多人才,举个例子,我有机会拜访一些重要客户的领导,有些客户说到,我在大学研究生论文就是由你们SAS完成的,对我们有深厚的情感。对于学术教育的投入是进入一个新时代还是值得我们企业去参考的,它是人才战略部署很长远很关键深远的影响。
最后分享一句话我们的CEO谈到,如果坚信员工可以改变世界,他们必将改变世界!当我们作为一个企业的领导团队,对我们的员工有这样的信念,而且把这样的热情传递给他们,一定可以激发出他们的潜能,做好对客户的服务,这是我们在人才战略发展上的非常关键的所遵循的宗旨,
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10