京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机顶盒能否“反向收集”用户行为大数据_数据分析师
1、从技术的观点来看机顶盒,为什么不能直接把用户的「操作过程」反向搜集,成为可以评估的大数据吗?包括电视台方面的设备改造,难度大吗?
2、现在一般通用的机顶盒,和ac尼尔森的数据搜集设备,技术差距有多大?
来自知乎小伙伴陳泰坦Titan的回答:
1、从技术的观点来看机顶盒,为什么不能直接把用户的「操作过程」反向搜集,成为可以评估的大数据吗?包括电视台方面的设备改造,难度大吗?
2、现在一般通用的机顶盒,和ac尼尔森的数据搜集设备,技术差距有多大?
简单回答:技术0差距,完全沒难度!
和电視台信号源完全无关,我们本身机顶盒就已经可以完成记录用戶转台的时间,停留的长度,并且可以把数据回传。尼尔森的收视仪也就是这个功能⋯
然而,为什么不呢?(沒错,以下才是正文⋯)
尼尔森公司是做什么的呢?
他们是做第三方收视率监测
关键词不是“收视率监测”,而是“第三方”
我们设想一下,如果机顶盒是收视率来源,数据会怎么样?
以广州为例。
先科普一下,广州有两个机顶盒供应商,分別是广州有线和广东有线,而由于历史原因,这两个公司分別递属于广州电视台和广东电视台。
冰雪聪明的你可能已经想到,广州有线机顶盒测出来的收视率,当然是广州台比较高;广东有线的机顶盒,当然是广东台的数据比较好好⋯收视率高,意味着广告可以卖更贵,意味着电视台收入高⋯
既当球员又当裁判,必然是不行的⋯
其实,几年前当央视收购索福瑞,成立中国最大的收视率调查公司央视—索福瑞的時候,业界就有过类似质疑。
最后再科普一个,现在尼尔森、索福瑞的收视率样本,都是有价样本,意思是,作为被调研人,是签合约收钱的,是有义务保证自己是公平公正的。
————补充说明———-
关于有同学提出当地机顶盒就是由“第三方”提供的,但请留意,目前应该还沒有一个全国性的第三方吧?
还是以广东为例,如广东的收视以广东的数据为准,湖南的收视以湖南数据为准,那会导致广告沒人看湖南卫视,湖南也沒人看广东卫视⋯
就像中国和韩国队踢球,裁判是不会用中国人或韩国人的,以免地方保护⋯
来自知乎小伙伴李宁的回答:
前两天刚同尼尔森的高层吃过饭。今天刚跟索福瑞中层开过会。
令人遗憾的是——你看电视再多,也不会成为大数据的一份子。
以下是答题。
1、技术上没什么差别,差别是稳定性。
普通机顶盒造价便宜的很,监测收视率的机顶盒造价要高得多。索福瑞和尼尔森的都是。最重要的就是数据回传的稳定性。
如果数据中断,对于时时收视率监控的影响是很大的。
数据的可靠性是数据公司安身立命的根本。当然,如果全国人民的数据都搜集,成本实在太高,所以,他们是这么做的——
2、你家开着电视机对“大数据统计”没啥影响
为了保证稳定性和准确性,所以就需要进行专门的样本监测。
样本呢,不会很多,因为统计全国人民看电视的大数据,公司估计要全球IPO了才能买得起那么多机房。
所以呢,尼尔森和索福瑞都在取样,选取不同职业、年龄、身份的人作为样本。
真相只有一个,只有他们,才对收视率有影响。
诺,就是这个玩意儿,一般人都木有见过哦。所以你天天看电视,对大数据和收视率都是木有用的。
3、说点题外话
目前收视率受到质疑,主要是因为污染样本太严重。
比如一个不知名电视剧,如果搞定了收视率样本,就能搞定广告主投放广告,电视台就能以小博大发横财,这种掮客也不少。
未来,网站、APP、电视盒子会成为重要的影视数据统计来源,索福瑞和尼尔森也在转型。
电视已是黄昏行业,浪潮之巅的大数据,充满想象。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07