
加权方法:
采用因子加权:对满足特定变量或指标的所有样本赋予一个权重,通常用于提高样 本中具有某种特性的被访者的重要性;例如,研究一种香烟的口味是否需要改变, 那么不同程度吸食者的观点也应该有不同的重要性对待:例如:重度吸食者=3,经 常吸食者=2,偶尔/不抽烟=1,记住:实际应用时候,如果“经常/偶尔”的基数足 够大,往往单独分析,不进行加权处理;
采用目标加权:对某一特定样本组赋权,以达到们预期的特定目标;例如:我们想 要:品牌 A 的 20%使用者 = 品牌 B 的 50%使用者;或者品牌 A 的 20%使用者 = 使用品牌 A 的 80%非使用者;
采用轮廓加权:多因素加权,因子/目标加权不同(一维的),轮廓加权应用于对调查 样本相互关系不明确的多个属性加权;面对多个需要赋权的属性,轮廓加权过程应
该同时进行,以尽可能少的对变量产生扭曲;
我们应该知道,无论加权的动机是什么,但操作过程是一样的:
1. 依不同属性变量/指标将样本分为多个组(加权组), 然后根据所希望各个组代表的个 体规模赋予不同的权重;即明确分析子集/样本组,通常,经常以人口结构变量、地 域变量作为分类指标;明确各个分析子集/样本组中个体的代表性强弱(权重); 2. 加权是在数据收集结束后采取的数据“纠偏”行为,但一定要清醒的知道:配额设置 不合适、FW 执行差或其他错误而造成的“不好”的原始数据收集,即使加权也一定 是“无效的”; 3. “提前避免错误/失误发生,总好过事后的任何补救!”
事后加权案例: 例如:我们为了研究,得到某小公司职员吸烟习惯的信息,进行了一项调查。从 N=78 个 人的目录中抽出了一个 n=25 人的简单随机样本。在调查的设计阶段,并没有可用于分层 的辅助信息。在收集关于吸烟习惯的信息的同时,还收集了每个回答者的年龄和性别情况。 总共有 nr=15 个人作出了回答。 由此得到样本数据的下列分布:
假设我们估计知道某公司约有 16 个男性职员和 62 个女性职员,而且男女的吸烟比例 不同。经过加权后我们得到该公司吸烟的比例估计在 53%; 我们总是希望调查所得的估计值与已知的男性和女性数量比例相一致,当我们认为一个 人是否吸烟与他的性别之间可能存在相关性, 因此他们认为, 使用事后分层能够提高估计的 精度。 然而实际上,如果在调查的设计阶段就已经获得这些信息的话,就可以用性别来进行分层。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07