京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这样就可以得到统一视图下的选择图了!
数据可视化的艺术——用图表吸引目光(四)——Excel 金字塔图 数据可视化的艺术——用图表吸引目光(四)——Excel 金字塔图
这次介绍一个 Excel 的小技巧,关于单元格格式中【数字】这一项的设定。 请看上图所示的金字塔图,有没有发现问题? 比如下图
按照常规的作图方式, 图中突出的两个地方的数字应该是“-9508”和“-15000”。 但是在 表示人口数量的时候使用负数显然是不合适的。因此我们可以想个办法将 Excel 中的图标 转换成 y 轴左右都是正数的形式。
调查数据的加权处理技术
很多人在进行统计分析和市场研究的时候, 都涉及到对数据进行加权的问题, 这是一个搞数 据分析和从事市场
研究的人都会碰到的问题, 需要大家正确理解并解释, 并采用合理的操作 技术和处理方法。 什么是加权呢? 简单地说,就是要“让一些人变得比另一些人更重要!” 要能够比较好的理解加权,首先你要了解抽样设计,特别是设计权数:每个样本单位所代表 的被调查总体的单位数。设计权数由抽样设计决定,用 Wd 表示。 设计权数 Wd=1/入样概率; 入样概率:在抽样设计中,如果一个样本的入样概率=1/50,那么该样本的设计权数=50。 也就是说,这个样本代表了总体中的 50 个单位。 关于自加权抽样设计:如果所用样本的设计权数是相等的,那么这样的抽样设计是自加 权的。也就是说,总体中的每个单元被抽中的可能性相等,具有等可能性、具有相等的入样概率。如果是自加权的,在总体均值、比例估计时不用考虑设计权数,对总量的估计只要扩 大样本。 满足自加权的抽样设计:等概率抽样、简单随机抽样、系统抽样、分层抽样—各层大小 成比例,每层内简单随机抽样、多阶段抽样—最后阶段等概率,其它阶段与单位大小成比例 概率抽样。 不等概率抽样往往不满足自加权, 对于不等概率抽样, 正确使用设计权数就尤为重要了!
下面我们看看如何进行加权处理! 加权:通过对总体中的各个样本设置不同的数值系数(即加权因子-权重),使样本呈现希望 的相对重要性程度; 基本加权等于:设计加权=某个变量或指标的期望比例/该变量或指标的实际比例;
什么情况下要进行加权? 情景 1:我们在抽样调查得到的样本结构与总体人口统计结构状况不相符,我们可以通过加 权来消除/还原这种结构差异,达到纠偏的目的; 例如,在城市和农村各调查 300 样本,城市与农村人口比例“城市:农村=1:2”(假设),在 分析时我们希望将城市和农场看作一个整体,这时候我们就可以赋予农村样本一个 2 倍于 城市样本的权重; 情景 2:除了人口统计结构,有时候我们在调查样本的某些变量或指标上样本的代表性可能 也会相对总体的实际状况过高/过低,此时,需要加权进行调整;
这类不匹配大多是我们“故意”而为(通过“追加”样本实现),比如在配额抽样的时候,设置配 额要求某类被访者对某产品的使用者必须达到 50%,但实际情况是总体市场中实际使用者 仅有 10%; 有时,则是“非情愿”的出现,比如设置了能反映总体的配额比例,但实际操作却出现了比例 偏高/偏低; 情景 3:在样本组配额实验设计中,进行不同子总体对比检验,也会通过加权来调整不同组 间的样本属性不相匹配的情形(通常设有相同的配额,但执行有可能会出现差异);通常,加 权对结果产生的差异很小,更多的是对结果从准确度上进行修饰; 情景 4:所测试样本出现了较多的缺失值,需要加权来纠正结果;对于面向特定客户的专项 研究,在调查前基本都协议有要完成的样本量,故这种情形较少;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16