
穿戴式设备与大数据:秋水共长天
2014年8月31日,由百度新闻、百度百家联合主办的第三期“BigTalk”交流活动在798恒通创新中心举办,本期所探讨的话题是“大数据开启大时代”,核心对话人物是MIT媒体实验室的负责人Alex Pentland(阿莱克斯.彭特兰),参会人员包括了百度百家核心作者,以及一线媒体记者。
整个交流过程耗时3个多小时,Alex Pentland用他来自大洋彼岸的见解和眼光,向中国市场上的用户讲述了他对于大数据的应用价值、市场挑战,穿戴式设备发展的看法,以及交流了大数据在相关领域的应用案例。
作为业界知名的“穿戴式之父”,Alex Pentland的很多观点和解说别具风格,其中就大数据与穿戴式设备的发展关系方面,Alex Pentland指出大数据对于穿戴摄设备确实有一定的辅助作用,但大数据和穿戴摄设备的应用、市场价值等各具不同。
大数据价值:催生互联网变革
Alex Pentland教授认为,大数据作为调配、分析数据的新型商业应用,对于整个社会和当前时代都有着不可估量的价值,比如普通用户通过佩戴穿戴摄设备之后,可通过大数据的海量数据分析结果,检测出自身的身体健康因素,进而进行有效的科学分析。因此从医学、健康等领域来说,大数据辅助穿戴式设备实现更便利的生活方式,目前已经是不争的事实。
但是Alex Pentland教授也认为,大数据本身是一种新型商业模式,但其并不能完全实现解决目前市场上的所有解决方案需求,这方面的问题,交流现场播放了数款穿戴式设备测试但数据均不准确的视频之后,Alex Pentland教授的这一观点得到普遍认可。
在Alex Pentland教授看来,大数据的更切实价值在于催生互联网发生变革,让互联网改变新的存在方式,继而变得更加为用户服务。这方面,Alex Pentland教授的一个学生——Googl glass眼镜的发明者的案例,正好可以在这方面给予强有力的说明。
因此,对于大数据来说,在当前的时代让其为生产力发生相应的变革,使得普通用户的生活变得更美好,这是当前大数据最基本的核心作用。作为一种新型商业现象,大数据虽然是信息技术发展的必然,但是在实际应用方面,不可对其进行过于神话的应用,是客观人士大数据的基础。
穿戴式设备:解决需求大于共体需求
在回答主持人主持的交流话题的时候,Alex Pentland再次重申了大数据在未来时代的应用价值,其表示大数据不仅可以广泛应用在商业中,在政府统计、产品开发等领域里,大数据同样具有举足轻重的作用。但是,对于当前的生产发展来说,大数据最重要的前提是解决需求问题的能力。
这正如目前市场上已经广泛存在的各种智能手环,虽然各家在功能、设计和参数等方面都在超前,但如果其不能解决用户最终的计数精确问题,便会成为让市场笑话的产物。因此,大数据对于需求而言,首先应该在于解决问题,而非创造问题。
对于应用大数据的平台或厂商而言,在如何保护用户隐私、行为痕迹等方面的问题也是目前亟须认真对待的一个问题,大数据作为收集、整理、分析海量数据的信息技术模式,其背后能否有效保护好用户隐私,这也是目前困扰和挑战现有商业规则是否健全的标准之一。
Alex Pentland在回答媒体记者提问的时候,就这个问题进行了再次说明。在其与记者的对话过程中,笔者能很明显地感觉到,Alex Pentland认为诸如iWatch之类的穿戴式设备虽然在未来会是一个发展方向,但随着未来的信息竞争,iWatch这样的产品也会面临严峻的用户信息安全问题。
大数据未来:方兴未艾的前途锦绣
在长达3个多小时的演讲中,Alex Pentland丝毫没有提及他个人的成就和影响,反而是和善地向在座的观众阐述了他的见解和观念,特别在涉及主持人问他作为一个穿戴式设备之父有没有使用穿戴式设备的时候,他的回答是没有,其原因就是其认为当前的各种穿戴式设备并不酷。
在涉及大数据本身话题方面,Alex Pentland在肯定大数据的商业价值的同时,也为大数据在市场挑战、应用门槛等方面的问题进行了概括和阐述。不过,Alex Pentland也认为,这些问题虽然也是客观存在的,但随着未来大数据在新的商业环境下的应用,这种问题将越来越不复存在。
至于目前正在全力进军穿戴式设备的平台和厂商,Alex Pentland认为,这是一种非常不错的开始,希望未来的穿戴式设备和大数据得到更深入结合后,一切可以变得更好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19