
一、管理咨询行业发展历程及发展现状
管理咨询服务形成行业只有大约60年的时间,它产生的时代背景是现代企业治理模式形成,所有权和经营权分离,职业经理人阶层出现,被称作“咨询顾问”的专业人员在董事会和职业经理人之间扮演了协调关系的角色,为企业所有者提供业务策略方面的建议,在财务、人力资源、营销、供应链等运营领域的为职业经理阶层提供先进经验学习、效率优化和组织变革的服务,辅之以信息技术工具等实现手段,最终提升企业的业绩。近年来,管理咨询行业似乎在面临着一场悄然的革命,随着信息化社会的发展,先进企业实践容易在网络上找到,咨询公司过去秘不示人的知识秘笈、方法套路被公开传播,同时,职业经理人的社会总量不断增加,MBA教育普及,甚至是咨询顾问加入企业担任高管,企业和咨询公司之间的信息不对称越来越小,传统管理咨询服务的稀缺性、独特性、原创性越来越低,企业购买管理咨询服务的动力在下降,可以观察到,很多80年代成名的大牌咨询公司不是倒闭,就是被具有良好赢利模式的相关企业收购。
二、管理咨询行业目前面临的挑战
那么传统管理咨询服务的价值主张面临的挑战在哪里呢?管理咨询为企业服务的过程是:分析业务问题、提出解决方案并且帮助企业实施,客户从这个服务中得到了三个层面的价值:
一是“方法价值”,即咨询服务将企业业务现象抽象为结构化、概念化的“模型”,从而提纲挈领,化繁为简,例如平衡计分卡、供应链管理、客户关系管理等,以及各个专业领域,例如供应链的物料需求计划、人力资源的职位评估、营销的4P模型等,都是咨询中最常用的模型。二是“Know-how价值”,在通用模型基础上,参照企业或行业的最佳业务实践,运用数据对标企业或行业水平。三是“变革价值”,在实施建议上,咨询顾问帮助企业的各层面人员达成理念共识,提升技能,推动状态转化。咨询服务交付是价值实现的过程,高水平的咨询公司在三个层面上都能提供让客户感知到价值;而站在客户的角度,这三层价值必须转换为自身的商业价值。传统咨询过程在第一和第二层价值产生模式是启发式(heuristic)的,即基于直观或经验,判断商业现象,在既定逻辑框架下给出解决方案,这些解决方案与结果优化的关联性是不可确知的,这是传统咨询的商业价值受到越来越多质疑的原因。
三、大数据时代,管理咨询该如何做才能起死回生?
云、大数据等技术成为影响业务的新因素,管理咨询的方法价值和Know-how价值的创造方式必须改变。为咨询价值创新提供了改变途径:
一是循证式(Evidence Base),即决策推论基于可衡量的证据链,例如利用信息技术对企业业务进行活动级的监控,可以方便地找到关键改进瓶颈,又如测量员工的能力和性格特征,从而发现工作绩效的根因;
二是洞察和优化,利用统计学、运筹学方法,对商业规律或组织行为进行预测,找到约束条件下的商业决策最优解,发现商业现象与影响因素的关联关系,在供应链优化、薪酬激励策略、产品研发方向、客户细分选择等领域提供更显性的决策依据;
三是整合内外部能力要素,企业的组织形态越来越动态、无边界,基于伺服式架构(SOA),打破企业封闭的价值链,再造企业价值网络,创新商业模式。咨询这两方面的价值可定量、可衡量,并直接与企业业务价值相联系;结构化方法和行业经验将越来越不成为咨询公司差异化的能力,提取业务数据、拥有数据资源和分析能力成为咨询公司新的价值主张。
无论技术怎么发展,企业管理作为一种组织行为,咨询的变革价值是不可替代的。在新环境下,组织形态越来越多样,各种变革挑战层出不穷,企业更需要借助外部力量来塑造变革领导力、创新企业文化。
总之,在当今商业环境下,管理咨询要得以生存和持续发展,价值主张必须从传统的“方法、经验、变革”向“数据、分析、创新”转化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09