京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据战略能不能打造第二个百度_数据分析师
哲学上讲,事物的发展是由量变到质变的过程,量的积累会到达质的飞跃。在时代的催化作用下,另一个“百度”即将登上历史的舞台。
4月24,以“大数据引擎驱动未来”为主题的百度第四届技术开放日在北京举行。百度CEO李彦宏表示:“技术创新是一个从量变到质变的过程。并行计算能力不断提升和云存储等技术产品成本的不断降低,使大数据真正走到了技术变革的临界点。百度开放自己的大数据核心能力,将更好地帮助传统行业挖掘数据价值,加快传统行业转型升级,进而发挥出对整体社会经济的革命性影响。”
显然,大数据蕴涵着巨大的社会价值和商业价值,已经成为一项重要的生产要素。而互联网带来的巨变让更多传统企业一时间无所适从,以技术为核心的大数据又开启新一轮的风暴。
当下,越来越多机构、企业都迫切希望从不同渠道获取的、多种类型、结构复杂的大数据中挖掘出有价值的趋势洞察,以实现快速、准确地制定决策,驱动商业和管理创新。然而,大部分机构和传统企业都普遍面临着大数据应用困境,不仅数据孤岛严重,数据存储与管理的规模、数据分析挖掘以及智能化能力也都存在着难以突破的瓶颈,处在从数据累积的量变过程转化为“数据智能”质变过程的临界点上。
或许,百度大数据将是传统企业向拥抱互联网飞跃的一座桥梁,抑或纽带。作为天然的大数据企业,百度拥有完整、领先的大数据技术,通过对全网大数据进行处理,百度成功推出百度指数、百度商情、百度司南等一系列大数据商业化应用,以及“百度迁徙”、“景点舒适度预测”、“城市旅游预测”等大数据社会化产品,便于公众和企业使用百度开放的大数据资源。下一步,百度选择了将自身处理大数据的技术能力对外开放。
李彦宏表示,目前大家可以看到的是互联网行业正在改变传统行业、改变每个人的生活,而技术也正在改变着互联网。当技术的发展累积到一定的程度以后,就会从量变向质变过渡。
可以看出,在互联网改变传统行业的同时,技术的积累也在潜移默化的牵动着互联网的神经,在技术积累到一定程度,必然会引起质变,大数据引领未来的路径。
科学技术是第一生产力,技术沉淀必将引领未来。目前,百度的技术积累确实已经实力雄厚,大数据引擎完成了开放云,数据工厂,百度大脑的“三剑合璧”,在帮助更多的传统产业插上大数据的翅膀的同时,也帮助企业、组织、政府更好地决策。
百度的做法是把开放云、数据工厂、百度大脑组成“大数据引擎”,把大数据存储、分析和智能化处理等一整套核心能力通过平台化、接口化的方式对外开放。
例如,上传海量孩子的哭声,根据小孩的哭声数据库来预测可能的症状;通过用户的脉搏、血压、心电等数据积累,依据海量数据判断或预警用户可能产生的病情等。
从这个意义上来说,技术创新带来的种种变革,随时有可能会从量变转向质变,深度颠覆我们生活的世界。百度深信“技术改变世界”,而大数据引擎对经济社会的深刻颠覆,无疑是对此最好的诠释。百度大数据引擎将进一步利用互联网强大的数据库和数据处理能力,立足于提升传统产业效率和降低他们的成本,为传统行业转型升级做好技术铺垫。
事实上,以技术为核心的百度一直在寄望用互联网方式改造传统行业。此前,CEO李彦宏曾公开表示,互联网应更加积极地向传统行业进军。其中,他重点看好的五个行业包括电商、旅游、出版、教育和医疗。前不久,李彦宏在Q4财报分析师会议上透露,百度2014年仍将进行大张旗鼓的投资。
放眼未来,将是一个大数据为核心的世界,就像互联网的快车时代。李彦宏表示:“互联网在改变中国,这可以说是过去时,甚至是现在进行时,可是我们怎么样能够为未来时做准备呢?我觉得这就需要我们对技术,对大数据,或者以大数据为基础的互联网相关技术,有一个及早的了解、及早的认知、及早的拥抱”。
不难看出,百度已经走在时代前沿,大数据更是占尽先机,目前技术的积累已经走在量变到质变的临界。李彦宏以 “百度大脑”举例,“这个项目实际上用很多计算机加上人工智能,再加上深度学习技术去模拟人脑的思维。现在大约相当于两到三岁孩子的智力水平。这可能是世界上最复杂的可以模拟人脑思维的系统。但是当你想象,摩尔定律继续做十年二十年的话,百度大脑很有可能比人脑还要聪明,那时候质变就会发生。”
正如李彦宏所说:“技术积累到一定地步的时候,会发生量变到质变。量变过程中不会觉得很重要,但当发生质变的时候就有可能被打得措手不及。而人类的思维通常习惯于去想量变的事情,而忽视质变、即将到来的质变。”
当前,大数据正处在一个量变到质变的临界点,可以肯定的是,百度凭借技术的沉淀,加上搜索领域的多年积累,已抢占大数据的先机,这样看来,BAT的位置是对的,百度一直是主角,用技术引领未来,以大数据为核心再造一个百度也不是没有可能。
李彦宏在大会致辞中还表示,互联网正在加速淘汰传统行业,同时,很多人的思维方式也正在发生着改变,各种行业也在发生着改变。首先被互联网颠覆的行业就是传统的媒体行业,随后是零售、金融等。随着更多行业被互联网所颠覆,越来越多的人已经感觉到互联网真的来了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15