
如何设计 KPI 指标——关键绩效指标
KPI:关键绩效指标, 今年来企业一直关注这个问题,甚至有些公司,比如电信行业员工整天都围绕着 KPI 指标, 什么是 KPI 呢?关键绩效指标即以定量的指标衡量经营活动的量化结果,一般由客观计算 公式得出,并侧重考察当期绩效,最终成果以及对经营成果有直接控制力的工作;关键绩效 指标设定的原则应该依据“平衡计分卡”进行设定, 根据企业整体绩效目标及战略, 层层分解, 平衡考虑制定企业各层级的关键绩效指标。 关键绩效指标已经成为商业智能领域的重要体系和方法论, 如何从技术上实现 KPI 指标 设计,以及如何采用信息化手段能够呈现绩效指标,并实施管理和监控,成为构建商业智能 系统和经营分析系统的关键内容;
设计关键绩效指标的关键因素主要包括:
一致性: 保持与战略和目标一致; 所属性: 应归属个人或各团队拥有,并对其结果负责; 预测性: KPI 是衡量企业价值的推动者,期望绩效的领先绩效指标; 行动性: KPI 具有及时行动数据,用户可及时采取干预,提供绩效; 数量少: 让用户集中在几个重要价值的指标任务上; 简单性: 不要涉及复杂的指数,导致用户难直接施加影响; 平衡性: KPI 之间保持平衡并相互支持,不仅仅对局部优化流程; 触发变化:能触发一系列变化,尤其是高管进行监控; 标准化: 基于标准化定义、规则和计算方法,实现数据和仪表盘整合; 背景驱动:KPI 将绩效置于一定背景下,通过对象和阶段进行衡量; 激励性: 薪酬与 KPI 关联,在稳定期可提升影响力; 相关性: 进行定期评估及时更新;
设计关键绩效指标的 SMART 原则是: 根据经验, 在设计关键业绩指标的时候必须遵循 SMART 原则, 这五个字母分别代表一个具 体的含义:
S:业绩考核指标必须是具体和明确的,指标设计应当细化到具体内容,符合企业和 团队主导业绩目标,保证明确的导向性。
M:业绩考核指标应当是容易衡量的,工作业绩成果应体现为可以量化的指标。 A:业绩考核指标应当是可以达到的,在保证一定挑战性的基础上,指标应当是员工 在现有资源下经过努力可以实现的目标。
R:指业绩考核指标应当具有相关性,必须和企业的战略目标、部门的职能及岗位职 责紧密联系。
T:业绩考核指标应当是有明确的时间要求,关注工作完成的效率。
有关样本量代表性问题的解释
大部分从事调查研究的朋友,都会碰到“多大样本量”才用代表性问题,其实这个问题不光研 究人员会困惑, 企业也非常困惑。 那到底应该如何选择样本量呢?其实今天沈老师不是要回 答这个问题,而是帮助你:如何解释这样一个样本量是恰当或合适的,既满足统计要求,也 能考虑费用和可操作性! 1. 样本量的确定是费用与精度的函数,取决于研究的精度和费用,特别是实践中费用 考虑的更多! 2. 抽样调查,特别是随机抽样,样本有代表性,往往比普查更有效率,甚至精度更高, 这里我们主要计算和讨论抽样误差,非抽样误差是人为因素,考质量控制; 3. 样本量的确定有赖于随机抽样,或者说主要是针对随机抽样,需要统计推断下的计 算样本量,如果是非概率抽样,理论上没有计算和控制样本量的问题; 4. 如果研究只要 40-50 个样本,感觉上应该是非概率抽样(依赖被访者选择方式) 5. 即使是非概率抽样,我们很多时候也采用概率和统计分析及推断思想来进行数据分 析和下结论!只是这种方法没有完善的理论支持,或者说有可能因为研究者的主观 判断失误造成偏差; 6. 无论是概率抽样还是非概率抽样,样本量越大当然效果越好,结论越稳定(理论上 说) 7. 40-50 个样本在统计上属于小样本,t-检验,如果样本大于 60 或理想 120 以上, t 分布就是正态分布了,所以 40 个样本在统计上是最小推断总体的样本,换句话说
40-50 个样本是介于小样本和正态分布大样本的临界样本量;如果不严格的话 40 个样本就可以比较总体之间的统计差异了; 8. 所以,一般来讲,针对一个研究对象和人群,要进行比较最少 40 个样本,比如男 女差异,应该各拥有 40 人(80 人),或者说你们进行配额样本的时候要保证统计 比较的类别至少有 40 个样本; 9. 那么 40 个样本有代表性吗? 当然越多越好,越有代表性 10. 但如果调查对象非常一致,没有差异,只要问一个人就行了,所以要考虑研究对象 的差异性,如果差异大,当然样本量要大,如果没有差异,同质性较高样本量就少; 11. 总体的大小对样本量的选择没有影响,调查研究一般必须在研究前明确总体是谁, 大总体没有影响(上万人),中等总体有点影响(5000 人),小总体有很大影响 (千百个人);总体是你要推断的人群; 12. 再者要考虑研究对象在总体中拥有的比例(比如要找艾滋病人),如果比例非常低 的话,需要大样本才能找到;但往往商业研究就采用非概率抽样了,比如滚雪球抽 样,专家判断抽样,配额抽样等; 13. 另外,选择 40 个人,如果是经过我们主观判断的,有一种说法:叫条件概率,也 就是我们越了解研究目的和对象,我们就越能够做出正确判断;比如 P(A|B), 也就是说我们越了解 B 事件发生的概率,那么 A 发生的概率就越确定;就像我们在 Google 中搜东西,你的关键词=B 越准确,得到的结果 A 就越是你想要的东西; 14. 当然,如果你的主观判断错了,就会犯更大的错误 15. 还有就是希望得到的精度;如果得到的结果是 70%加减 10%误差我们可以接受, 但如果是总体本身就不到 8%,那 8%加减 10%,尾巴比头都大显然不行,当然到 底如何确定精度,是研究前你们与客户要明确的,事先研究设计确定的,不能事后 来说; 16. 记住:有时候我们研究本身不需要那么高的精度 17. 整个研究设计过程的质量控制可以更有效提升研究品质 18. 研究测试的技术(接近自然科学仪器测量)可获得更好研究品质 19. 根据精确的抽样,需要采用精确的统计分析,否则也达不到效果 20. 任何研究都不会完美,都是权衡和保守的过程,总的来讲保守不犯错.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18