
最后我们看一眼统计检验指标结果:
大家可以把我们前面做的结果进行相互比较,或许你能够看出哪些指标更好,哪些指标 该如何评测了!
我看出来了,比如:Sig 值越大越好,平稳得 R 方也是越大越好吧!
Sig.列给出了 Ljung-Box 统计量的显著性值,该检验是对模型中残差错误的随机 检验;表示指定的模型是否正确。显著性值小于 0.05 表示残差误差不是随机的, 则意味着所观测的序列中存在模型无法解释的结构。
平稳的 R 方:显示固定的 R 平方值。此统计量是序列中由模型解释的总变异所占比 例的估计值。该值越高(最大值为 1.0),则模型拟合会越好。
检查模型残差的自相关函数 (ACF) 和偏自相关函数 (PACF) 的值比只查看拟合 优度统计量能更多地从量化角度来了解模型。合理指定的时间模型将捕获所有非随 机的变异,其中包括季节性、趋势、循环周期以及其他重要的因素。如果是这种情 况,则任何误差都不会随着时间的推移与其自身相关联(自关联)。这两个自相关 函数中的显著结构都可以表明基础模型不完整。
如果你一定要理解 RMSE 或者 MAE 等统计检验量, 只好找来教科书好好学习了! 我想, 等我要写教科书的时候,一定会告诉大家如何检验这些统计量,并给出各种计算公式!但我 的学生或读者大部分是文科或企业经营分析人员,讲这些东西他们都会跑了!
大家不要忘了,SPSS 时间序列预测模块还包含模型应用,也就是可以把预测模型转存 为 XML 模型文件,以后预测的时候就可以不用原始数据了!
我记得早期 SPSS 公司推出时间序列预测模型软件 DecisionTime & What-if,非常好 用,而且还可以进行更为细致的分析,甚至结果输出都是自动报告!
当然,我找机会用 PASW Modeler 13 操作一次上述时间序列预测建模过程,也就是数 据挖掘工具中的时间序列预测方法,会更方便、更简单、更好部署!
备注:PASW Modeler 13 就是 SPSS 公司的 Clementine 13.0 版本! 博易智讯的马博士说: SPSS 公司已经把 SPSS 软件改名叫 PASW Statistics, Clementine 叫 PASW Modeler。
自变量的选择问题,在预测未来半年的销售收入中,ARIMA 模型可以把其它预测变量纳入考虑,但如何确 定未来这些预测变量的值呢?
主要方法可以考虑:1)选择最末期数据;2)选择近三期数据的平均;3)选择近三期的移动平均 这里我们选近三期移动平均作为预测自变量数值。 请问沈浩老师,以上这一段话怎么操作啊?在哪里选择这 3 种方法来确定未来的自变量的值啊?我试过手 工输入未来的自变量值,可以做出预测,但是我想模型应该可以自动生成这些未来自变量的值,我找了很 久都没有找着,请赐教!非常感谢! 另外, 有一个问题我一直没有想得很明白, 想请教一下。 多元回归分析做的预测和时间序列分析做的预测, 使用条件和最大的区别是什么啊?如果数据是按时间走的,是不是就不适合用多元回归分析做预测呢? 如果您能回复,我将感到万分荣幸。 SPSS 软件里面自变量取值一般是 0-1; 真实的干扰需要采用 Clementine 软件就有这个自动添加方式了, 抱歉我没有说清楚! 2)时间序列数据,自变量是相关的,当然不适合简单的线性回归分析!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07