
大数据要牢记的5大经验教训_数据分析师
对于企业来说,大数据应用有5大经验教训需要牢记。
1、 要赢得利益相关者的信任
大数据正确的分析方法是业务而不是技术,在开始部署大数据应用之前,赢得业务部门的信任,增强其信息至关重要。首先,利益相关者会帮助你获取所 需要的资源,包括团队、资金和必要的数据资源,让你的项目取得成功。其次,任何数据分析只有被付诸实践才是有效的。如果主要管理者不愿意基于大数据分析结 果对业务进行改进,那么所有的投入都会被浪费。
因此,增强利益相关者的信心将是当务之急。
2、专注于那些对于企业至关重要的问题
对于很多大的机构或者企业而言,如果能够进行数据归档并进行离线,采用几乎免费的集群数据库将会带来巨大的成本节省,这是非常普遍的。
如果能够对非结构化数据进行迁移,将会帮助企业节省大量的购买授权的成本,而部署和管理这样的系统,就需要投入进行系统架构,而所节省的授权成本恰好可以用于系统架构的开销。
在这种情况下,给中型企业的建议就是不要更多关注投资回报率,不要过多关注成本节省。获得最大的商业利益,是需要集中重点加以阐述的口头禅。
3、培养数据科学家
要将大数据应用付诸实践,对于人才的需求首当其冲。对于拥有大量资源的大机构这尚且是一个难题,对于中等企业就更是如此了。众多的市场研究表明,对于人才的需求难以在短时间内解决。与其花重金招聘,莫不如内部挖潜。
可以挑选那些充满了激情的数据库管理人员(DBA)已经愿意学习的业务分析人员,采取适合步骤对他们进行培养。
4、正确采用本机分析技术
拥有一个企业级大数据处理平台并不意味着企业具有驾驭意义数据的能力,拥有处理大数据集群是一件非常好的事情,但问题在于你是否能够以正确方式来确保能够获预期的商业价值呢?
尽管拥有高端大数据平台,但许多企业发现还是很难获取和分析数据。鉴于大数据已经成为整个IT业热点,因此市场上会有各种产品和方案供应商,但这些产品解决方案的效果还有待观察。
5、协作是口头禅
企业业务部门领导、销售主管以及职能部门人,如果缺乏必要的IT知识将很难认同大数据分析的结果。很快就可以发现,尽管具有前所未有的创新,然而相关人员不敢将其付诸应用。
中等企业通过协调IT和业务线,这会帮助克服可能碰到的路障、避免那些妨碍成功的陷阱。通过这种方式,不仅可以帮助企业适当管理好数据,同时也 可以确保能够在正确时间获取到正确的数据。 数据分析具有至关重要的价值,这些数据贵在发现,并证明有效,这将有助于企业进行正确的决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13