
大数据时代的非精准分析是否有用_数据分析师
2012年是“大数据”这个概念红火的一年,正如前一年的“云计算”,但概念很多,真正实用的却很少,这杯美酒如果不是吹出来的,至少也还是需要经过几年的窖藏才能面试。
据说,阿里巴巴基于大数据构建了“RTB广告交易平台”名为Tanx,能够实现让广告主从购买媒体变成直接购买用户。形象的说法是,一个人在淘宝上买了一件商品,比如项链,接着无论是打开优酷、PPS看视频,还是上搜狐、网易浏览网页,广告框里显示的广告全都有项链。
因为,在购买了项链之后,你就被贴上了“喜欢项链”的标签,卖项链的商家可以通过交易平台“买下”你,接着该平台会跟踪你的浏览行为,在你浏览其他网站的时候,恰到好处地把该商家的广告推送到你面前。而且,整个购买过程采用实时竞价的方式,即RTB(Real Time Bidding),价高者得。
这应该算是大数据的一个应用吧,也可以看作是阿里巴巴去年将大数据列为电子商务未来核心竞争之一的成果。但我们却不得不考虑,这样的广告真的有效吗?
1、大数据的分析从原来统计分析看重的因果分析转为相关分析,只要知道是什么,而不重点探究为什么。这已经成为共识,但这却不能成为大数据分析中力所应当的,这无论如何都是缺陷,而在大数据的背景下,分析原因将变得更为重要,也更需要定性和直觉。以上这个案例突出表明了用户的喜好相关性,但因果关系却不一定,弄错因果,差异巨大。
2、大数据分析重视对行为中的关联性研究从事进行预测,这种预测应该是具有预见性的,而不是说简单的联系。如果一个人买了项链,然后看电视剧的时候就弹出项链的广告,甚至价格,这种体验好像是事后诸葛亮,不仅不会增加购买,相反会增加客户懊悔的心境。我们需要找到的是看什么视频的人会买项链,买那款项链。
3、大数据的分析会大量收集用户的数据,虽然有一定的方法可以减小数据噪声的影响,但却也是不可能忽略的,“精确性不再重要”也只是适度而已,不能用不重视精确性的幌子来随便使用乱七八糟的大数据进行分析,因为这样的分析绝对不会有进行抽样统计得到的结果更好。
在一定意义上看,不管是微博、淘宝,等等,根据大数据进行的分析都有一定的合理性和代表性,却很难实现更大的更充分的价值,你怎知我注册信息的真伪与网络行动的真假?说起来,很多时候好笑,我使用的淘宝账户并非我自己注册,信息也不是我的,所以经常看到页面给我推荐的东西有些莫名其妙。其实,完全有办法根据我的购买习惯发现我的性别、住址、工作等等差异的,可粗线条的大数据难以做到,或者觉得没必要做到。
大数据分析需要连续的真实的少杂质的数据,而这些数据对于大多数中国企业而言简直是天方夜谭,在中国,也许银行、航空好一些,其他的即便通信运营商也是支离破碎的断断续续的真真假假的,这样的大数据分析就非常不靠谱了。
我们应该好好利用如今社会的数据采集系统珍藏的海量数据,但也不能太神话,在数据分析面前,智慧永远比算法和数量更重要,数据的多少并不是决定结果是否有价值的核心标准。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08