
用友UAP UDH大数据应用实践:舆情信息管理_数据分析师
目前,UAP在UDH平台上搭建出一个对企业品牌和市场信息进行监测的应用——舆情信息管理系统,并且已开始在UAP内部使用。通过舆情监测报告的形式来向公司高层及其它同事发布UAP关注的市场动态、竞争信息、技术热点等等,使他们了解到第一手的市场信息。
在互联网和移动化的世界,爱分享成了人们的一大标签。随着各行业各种类型的信息分享,社会化数据像滚雪球一样越滚越大,并且这种增长是呈几何倍的。有资料显示,1998年全球网民平均每月使用流量是1MB,2008年是1GB,2014年将是10GB。
企业纷纷看到了这些数据的价值,希望能够充分利用起来。如何利用呢?用友UAPUDH是用于处理大量的非结构化或半结构化类型数据,也适用于超大规模的结构化数据处理分析的大数据处理平台。它可以快速整合,存储,集中管理不同类型的海量数据。提供批量和实时数据处理、数据分析等服务。
目前,UAP在UDH平台上搭建出一个对企业品牌和市场信息进行监测的应用——舆情信息管理系统,并且已开始在UAP内部使用。通过舆情监测报告的形式来向公司高层及其它同事发布UAP关注的市场动态、竞争信息、技术热点等等,使他们了解到第一手的市场信息。之前UAP用的是第三方的服务系统,现在已经完全迁移到用友UAPUDH平台搭建的舆情信息管理平台。既节省了开支,又能根据需求定制报告。
舆情信息对于企业来讲尤为重要,尤其在社会化媒体,如微博微信快速发展的趋势下。企业需要及时掌握互联网上关于企业和产品的舆情,比如口碑,竞品,负面信息等,评估媒体推广效果。面对互联网上海量的舆情信息和快速的传播渠道,如何能够把互联网上的舆情信息变成企业的数字资产?传统的人工方式是无法完成的,只能借助于舆情信息的自动采集与分析实现。
据了解,UAPUDH还将会把舆情信息管理作为一项服务对外提供。届时,不仅用友内部各产品公司或分子公司可以使用,而且用友的客户和其它有舆情管理需求的企业都可以享受此服务。
用友UAP日常舆情监测截图
利用舆情信息可以提升企业的竞争优势。比如规避企业风险,在行业发展趋势里你的发展方向是否和市场方向有偏离;侦查竞争对手信息;发现用户的信息;发现自己,比如用户怎么评价自己,以此可以做出更有利于自己的改变;创造价值,根据一些信息激发更好的策略。
UAPUDH构建舆情信息管理系统,通过系统可以对企业的各种维度的舆情信息进行监控,收集竞争对手的情报,行业的发展动态等数据变成自己的报告。UDH舆情信息管理系统在最下面是大数据处理平台,有信息处理的服务。上面是分析系统,主要做舆情的收集和分析,比如做热点发现、精准分析、查询服务、搜索引擎、热点跟踪、自动分类、语义分析、智能过滤等。分析之后要把它应用到实际工作之中,形成每日舆情报告、对手实时监测、当前热点追踪、负面舆情监测等,通过几个维度就可以把每天发生的事情及时反馈。
基于用友UAPUDH构建的舆情信息管理系统
UAP的舆情信息管理平台构建于UDH的可靠存储以及数据的批量和实时处理能力,提供基于搜索引擎,语义分析的精准,全面,自动化的监测和分析。并且具有自动优化机制,随着有效数据和规则的增加,精准度会不断提升。
UAPUDH舆情信息管理平台有几大优势:第一,及时全面。高并发、分布式的信息采集,确保信息的完整性和及时性;第二,省时省力。集成了成百上千个数据源,提供定制化的采集机制;第三,强大引擎。基于UAPUDH的数据处理引擎,为舆情分析提供强大支撑;第四,更加精准。采用智能过滤、语义分析技术,基于AE平台,提供更加准确的舆情信息;第五,专业技术。UAP数据平台大数据与挖掘分析团队提供技术支持。
那么UAP的舆情信息管理系统究竟是怎样一个处理流程呢?
首先,定义互联网的数据来源,设定一些目标网站,指定内容数据的检测、抓取、分析处理。数据的来源类型可包括新闻、论坛、博客、微信、微博等;第二步,在带宽允许的情况下,实现内容的高速采集。支持对URL,主题,关键字,时间,内容等元数据的提取;第三步,基于Python脚本的采集引擎,实现对网页内容自动解析;最后,自动生成报告。
舆情信息管理可以让企业知道自身品牌和产品在市场的声音,以及这些声音获得了哪些反馈,同时了解同行在做什么,竞争对手做了什么。及时了解行业趋势,为未来产品和市场投入提供参考依据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23