
spss的数据分析报告_spss的数据分析实例_spss的数据分析(2)_数据分析师
tisti Statistic c Educationa l Level 474 (years) Current Salary 474
Statistic
Statistic
Statistic
Std. Std. Statisti Statisti Erro Erro c c r r
8
21
13.49
2.885
-.114
.112 -.265
.224
$15,750
$135,000
$34,419.5 $17,075.66 2.125 7 1 $17,016.0 $7,870.638 2.853 9
.112 5.378
.224
Beginning 474 Salary Previous Experience 474 (months)
$9,000
$79,980
.112 12.390 .224
0
476
95.86
104.586
1.510
.112 1.696
.224
2
Months 474 since Hire
63
98
81.11
10.061
-.053
.112 -1.153
.224
如表所示,以起始工资为例读取分析结果,474名职工的起始工资最小值为$9000 ,最大 值为$79980,平均起始工资为$17016,标准差为$7870.638,偏度系数和峰度系数分别为 2.853和12.390。其他数据依此读取,则该表表明474名职工的受教育水平、起始工资、现工 资、先前工作经验、现在工作经验的详细分布状况。
3、 Exploratory data analysis。
(1) 交叉分析。 通过频数分析能够掌握单个变量的数据分布情况, 但是在实际分析中, 不仅要了解单个变量 的分布特征,还要分析多个变量不同取值下的分布,掌握多个变量的联合分布特征,进而分 析变量之间的相互影响和关系。 就本数据而言, 需要了解现工资与性别、 年龄、 受教育水平、 起始工资、本单位工作经历、以前工作经历、职务等级的交叉分析。现以现工资与职务等级 的列联表分析为例,读取数据(下面数据分析表为截取的一部分): 单因素分析用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。下面我 们把受教育水平和起始工资作为控制变量, 现工资为观测变量, 通过单因素方差分析方法研 究受教育水平和起始工资对现工资的影响进行分析。分析结果如下:
ANOVA Current Salary Sum of Squares 1E+011 2E+010 1E+011 df 89 384 473 Mean Square 1370635995 41484093.53 F 33.040 Sig. .000
Between Groups Within Groups Total
上表是起始工资对现工资的单因素方差分析结果。可以看出:F 统计量的观测值为 33.040, 对应的概率 P 值近似等于 0,如果显著性水平为 0.05,由于概率值 P 小于显著性水平 q,则 应拒绝原假设,认为不同的起始工资对现工资产生了显著影响。
ANOVA Current Salary Sum of Squares 9E+010 5E+010 1E+011 df 9 464 473 Mean Square 9850392785 106170173.2 F 92.779 Sig. .000
Between Groups Within Groups Total
同理,上表是受教育水平对现工资影响的单因素分析结果,其结果亦为拒绝原假设,所以不 同的受教育水平对现工资产生显著影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18