京公网安备 11010802034615号
经营许可证编号:京B2-20210330
spss的数据分析报告_spss的数据分析实例_spss的数据分析(2)_数据分析师
tisti Statistic c Educationa l Level 474 (years) Current Salary 474
Statistic
Statistic
Statistic
Std. Std. Statisti Statisti Erro Erro c c r r
8
21
13.49
2.885
-.114
.112 -.265
.224
$15,750
$135,000
$34,419.5 $17,075.66 2.125 7 1 $17,016.0 $7,870.638 2.853 9
.112 5.378
.224
Beginning 474 Salary Previous Experience 474 (months)
$9,000
$79,980
.112 12.390 .224
0
476
95.86
104.586
1.510
.112 1.696
.224
2
Months 474 since Hire
63
98
81.11
10.061
-.053
.112 -1.153
.224
如表所示,以起始工资为例读取分析结果,474名职工的起始工资最小值为$9000 ,最大 值为$79980,平均起始工资为$17016,标准差为$7870.638,偏度系数和峰度系数分别为 2.853和12.390。其他数据依此读取,则该表表明474名职工的受教育水平、起始工资、现工 资、先前工作经验、现在工作经验的详细分布状况。
3、 Exploratory data analysis。
(1) 交叉分析。 通过频数分析能够掌握单个变量的数据分布情况, 但是在实际分析中, 不仅要了解单个变量 的分布特征,还要分析多个变量不同取值下的分布,掌握多个变量的联合分布特征,进而分 析变量之间的相互影响和关系。 就本数据而言, 需要了解现工资与性别、 年龄、 受教育水平、 起始工资、本单位工作经历、以前工作经历、职务等级的交叉分析。现以现工资与职务等级 的列联表分析为例,读取数据(下面数据分析表为截取的一部分): 单因素分析用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。下面我 们把受教育水平和起始工资作为控制变量, 现工资为观测变量, 通过单因素方差分析方法研 究受教育水平和起始工资对现工资的影响进行分析。分析结果如下:
ANOVA Current Salary Sum of Squares 1E+011 2E+010 1E+011 df 89 384 473 Mean Square 1370635995 41484093.53 F 33.040 Sig. .000
Between Groups Within Groups Total
上表是起始工资对现工资的单因素方差分析结果。可以看出:F 统计量的观测值为 33.040, 对应的概率 P 值近似等于 0,如果显著性水平为 0.05,由于概率值 P 小于显著性水平 q,则 应拒绝原假设,认为不同的起始工资对现工资产生了显著影响。
ANOVA Current Salary Sum of Squares 9E+010 5E+010 1E+011 df 9 464 473 Mean Square 9850392785 106170173.2 F 92.779 Sig. .000
Between Groups Within Groups Total
同理,上表是受教育水平对现工资影响的单因素分析结果,其结果亦为拒绝原假设,所以不 同的受教育水平对现工资产生显著影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19