
spss的数据分析报告_spss的数据分析实例_spss的数据分析(2)_数据分析师
tisti Statistic c Educationa l Level 474 (years) Current Salary 474
Statistic
Statistic
Statistic
Std. Std. Statisti Statisti Erro Erro c c r r
8
21
13.49
2.885
-.114
.112 -.265
.224
$15,750
$135,000
$34,419.5 $17,075.66 2.125 7 1 $17,016.0 $7,870.638 2.853 9
.112 5.378
.224
Beginning 474 Salary Previous Experience 474 (months)
$9,000
$79,980
.112 12.390 .224
0
476
95.86
104.586
1.510
.112 1.696
.224
2
Months 474 since Hire
63
98
81.11
10.061
-.053
.112 -1.153
.224
如表所示,以起始工资为例读取分析结果,474名职工的起始工资最小值为$9000 ,最大 值为$79980,平均起始工资为$17016,标准差为$7870.638,偏度系数和峰度系数分别为 2.853和12.390。其他数据依此读取,则该表表明474名职工的受教育水平、起始工资、现工 资、先前工作经验、现在工作经验的详细分布状况。
3、 Exploratory data analysis。
(1) 交叉分析。 通过频数分析能够掌握单个变量的数据分布情况, 但是在实际分析中, 不仅要了解单个变量 的分布特征,还要分析多个变量不同取值下的分布,掌握多个变量的联合分布特征,进而分 析变量之间的相互影响和关系。 就本数据而言, 需要了解现工资与性别、 年龄、 受教育水平、 起始工资、本单位工作经历、以前工作经历、职务等级的交叉分析。现以现工资与职务等级 的列联表分析为例,读取数据(下面数据分析表为截取的一部分): 单因素分析用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。下面我 们把受教育水平和起始工资作为控制变量, 现工资为观测变量, 通过单因素方差分析方法研 究受教育水平和起始工资对现工资的影响进行分析。分析结果如下:
ANOVA Current Salary Sum of Squares 1E+011 2E+010 1E+011 df 89 384 473 Mean Square 1370635995 41484093.53 F 33.040 Sig. .000
Between Groups Within Groups Total
上表是起始工资对现工资的单因素方差分析结果。可以看出:F 统计量的观测值为 33.040, 对应的概率 P 值近似等于 0,如果显著性水平为 0.05,由于概率值 P 小于显著性水平 q,则 应拒绝原假设,认为不同的起始工资对现工资产生了显著影响。
ANOVA Current Salary Sum of Squares 9E+010 5E+010 1E+011 df 9 464 473 Mean Square 9850392785 106170173.2 F 92.779 Sig. .000
Between Groups Within Groups Total
同理,上表是受教育水平对现工资影响的单因素分析结果,其结果亦为拒绝原假设,所以不 同的受教育水平对现工资产生显著影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29