京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何进行大量数据需要统计的数据库设计_数据分析师
数据越大查询越慢,这个是必然的的,使用缓存可以提升速度,但是不能实时。。。最佳解决方案就是多级报表。。。
比如,如果要统计全国2000多个县市数据,就要遍历2000个点。。如果中间加个省级报表,,这样全国报表就可以建立在30多个省级报表汇总就可以了。。。
在省级报表基础上,可以仿照军区方式,对全国划区,比如7个大区,这样,统计全国报表只要遍历7个点啦。。
所以,我觉得比较好的方式就是多级报表,推荐 全国》》区域》》省》》市县不过我想更加通用的方案是 建立业务级别的索引。。
1. 业务级别的索引 1
2. 创建索引可以大大提高系统的性能。 1
3. 索引的实现 2
3.1. 通常使用B树及其变种B+树。(需要排序) 2
3.2. 使用hash 2
4. 业务索引的存储 2
5. 索引的实现方式优化 2
5.1. 增量索引 2
6. 增加索引也有许多不利的方面。 2
1.业务级别的索引
大数据量统计下的统计非常慢。缓存可以部分解决这个问题,也可以缓解这个问题,但是缓存往往不能实时查询。多级关联查询也比较麻烦。。
解决思路,就是仿照数据库,建立业务级别的索引。。
默认数据库只能建立列的索引,,只有oracle支持函数索引,mysql ,mssql都不支持函数索引
至于业务索引,只能自己实现了。。
2.创建索引可以大大提高系统的性能。
第一,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
第二,可以大大加快数据的检索速度,这也是创建索引的最主要的原因。
第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。
第四,在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。
第五,通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。
3.索引的实现
3.1.通常使用B树及其变种B+树。(需要排序)
3.2.使用hash
4.业务索引的存储
可以使用表来存储。。。Oracle可以建立函数索引,,但业务索引需要使用编程语言代码来计算结果,最后把结果存储到索引里面,建立专门的索引存储表。。。
5.索引的实现方式优化
5.1.增量索引
6. 增加索引也有许多不利的方面。
第一,创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。
第二,索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。
第三,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度
但从数据库角度,做集群。 建议用hadoop.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13