京公网安备 11010802034615号
经营许可证编号:京B2-20210330
光“大”是不行的,开放才能实现大数据的深发展_数据分析师
围墙里的大数据注定成为死数据。大数据需要开放式创新,从数据的开放、共享和交易,到价值提取能力的开放,再到基础处理和分析平台的开放,让数据如同血液在数据社会的躯体中长流,滋润数据经济,让更多的长尾企业和数据思维创新者产生多姿多彩的化学作用,才能创造大数据的黄金时代。
我的大数据研究轨迹
我做了4-5年的移动架构和Java虚拟机,4-5年的众核架构和并行编程系统,最近4-5年也在追时髦,先是投入物联网,最近几年一直在做大数据。我们团队的大数据研究轨迹如下图所示:
2010-2012年,主要关注数据和机器的关系:水平扩展、容错、一致性、软硬件协同设计,同时厘清各种计算模式,从批处理(MapReduce)到流处理、Big SQL/ad hoc query、图计算、机器学习等等。事实上,我们的团队只是英特尔大数据研发力量的一部分,上海的团队是英特尔Hadoop发行版的主力军,现在英特尔成了Cloudera的最大股东,自己不做发行版了,但是平台优化、开源支持和垂直领域的解决方案仍然是英特尔大数据研发的重心。
从2013年开始关注数据与人的关系:对于数据科学家怎么做好分布式机器学习、特征工程与非监督学习,对于领域专家来说怎么做好交互式分析工具,对于终端用户怎么做好交互式可视化工具。英特尔研究院在美国卡内基梅隆大学支持的科研中心做了GraphLab、Stale Synchronous Parallelism,在MIT的科研中心做了交互式可视化和SciDB上的大数据分析,而中国主要做了Spark SQL和MLlib(机器学习库),现在也涉及到深度学习算法和基础设施。
2014年重点分析数据和数据的关系:我们原来的工作重心是开源,后来发现开源只是开放式创新的一个部分,做大数据的开放式创新还要做数据的开放、大数据基础设施的开放以及价值提取能力的开放。
数据的暗黑之海与外部效应
下面是一张非常有意思的图,黄色部分是化石级的,即没有联网、没有数字化的数据,而绝大多数的数据是在这片海里面。只有海平面的这些数据(有人把它称作Surface Web)才是真正大家能访问到的数据,爬虫能爬到、搜索引擎能检索到的数据,而绝大多数的数据是在暗黑之海里面(相应地叫做Dark Web),据说这一部分占数据总量的85%以上,它们在一些孤岛里面,在一些企业、政府里面躺在地板上睡大觉。
数据之于数据社会,就如同水之于城市或者血液之于身体一样。城市因为河流而诞生也受其滋养,血液一旦停滞身体也就危在旦夕。所以,对于号称数据化生存的社会来说,我们一定要让数据流动起来,不然这个社会将会丧失诸多重要功能。
所以,我们希望数据能够像“金风玉露一相逢”那样产生化学作用。马化腾先生提出了一个internet+的概念,英特尔也有一个大数据X,相当于大数据乘以各行各业。如下图所示,乘法效应之外,数据有个非常奇妙的效应叫做外部效应(externality),比如这个数据对我没用但对TA很有用,所谓我之毒药彼之蜜糖。
比如,金融数据和电商数据碰撞在一起,就产生了像小微贷款那样的互联网金融;电信数据和政府数据相遇,可以产生人口统计学方面的价值,帮助城市规划人们居住、工作、娱乐的场所;金融数据和医学数据在一起,麦肯锡列举了很多应用,比如可以发现骗保;物流数据和电商数据凑在一块,可以了解各个经济子领域的运行情况;物流数据和金融数据产生供应链金融,而金融数据和农业数据也能发生一些化学作用。比如Google analytics出来的几个人,利用美国开放气象数据,在每一块农田上建立微气象模型,可以预测灾害,帮助农民保险和理赔。
所以,要走数据开放之路,让不同领域的数据真正流动起来、融合起来,才能释放大数据的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19