
利用大数据供应链释放商业价值_数据分析师
现如今,数据技术飞速发展,但大量企业数据并未得到充分利用。Gartner近期的一份调查显示,85%的《财富》500强企业都未充分发掘大数据所蕴藏的潜力并据此形成竞争优势,这样的情况将持续至2015年底。异曲同工的是,埃森哲的研究发现,虽然半数的受访企业很重视数据的准确性,但绝大多数管理者并不清楚数据分析项目会带来怎样的业务成果。企业的数据生态系统正变得日益复杂,各自为政的“数据孤岛”却比比皆是,限制了企业从数据中创造价值。
为了释放数据所蕴藏的潜力,企业应着手将数据视为一条供应链,使该链条以简单、有效的方式在整个企业中流动,并最终贯穿包括供应商和客户在内的整个企业合作伙伴生态系统。通过有效的配置和管理,数据供应链有助企业发掘内部数据,对更多数据来源进行充分利用,并最终产生切实可行的业务洞察力。
而对于强有力的数据供应链而言,数据加速起着至关重要的作用。数据加速主要依托相关工具和技术快速获取海量数据(从数据源输入专门的数据系统),并能使其迅速存储和取用。具体而言,企业能够通过数据加快节奏获取有价值的数据,进而进行数据分析,获取洞察力并据此采取行动,有时甚至能在机遇窗口极为短暂的情况下迅速交付。
由此可见,数据加速能帮助企业克服数据迁移、数据处理和数据交互的数据相关挑战,从而从根本上解决如何使数据从源头迅速迁移到有需求的企业部门,如何尽快处理数据以获取可行洞察力,以及如何快速响应用户或应用提交的查询请求等问题。
过去,数据在企业中的迁移缓慢且相对直接:数据首先被收集至暂存区,随后再转换成适当的格式,并加载存入同数据源,然后以点对点的形式将数据直接传输至数据集市,供用户和应用调取使用。然而,随着数据量和数据种类的急剧增加,这种传统的流程已难以为继。
物联网进一步推动了数据迁移的发展。到2020年,全球将有多达260亿台设备集成、纳入到物联网当中。每台互联设备都会生成数据,并且具有各自的形式和特征。对于出自各类源头、各式各样的数据,要想从源头把对应数据完整地传输到有需求的企业部门,难度好比将消防龙头当作引水口,并且要求做到滴水不漏。而数据加速恰恰有利于企业有效管理这项艰巨而又工程浩大的任务,通过各种方式将数据纳入企业的数据基础架构,确保数据能够快速存取。
长期以来,企业一直通过数据处理来获取切实可行的洞察力。然而,有待处理的数据量和数据种类显著增加。为适应该情况,实现又快又准的处理结果,企业必须培养相应的数据处理能力。
实时分析技术的崛起为企业带来了诸多全新机遇。良好的分析技术会对输入数据进行预处理。例如,通过监测客户所处位置,企业能在客户接近潜在购买地点时,向客户的移动设备发送促销或折扣信息。而更加出色的技术则会将流数据与历史(已建模的)数据有机结合起来,从而做出更加明智合理的决策。举例而言,如果能将客户位置与其购买历史对应起来,企业就能向同一位客户发送量身定制的个性化促销信息,从而提高购买的可能性。
为从更加快速的数据处理中全面获益,企业必须对计算机集群进行有效利用——即通过组织有序的成百上千台计算机筛选海量数据。市场上有关数据快速存取的新型解决方案已如雨后春笋般涌现,每一种方案都为数据处理速度、耐久性和准确性提供了有力保证。数据加速能为实现更快的数据处理提供支持,利用计算机集群的软硬件升级,使计算机的运行效率得到前所未有的提升。
数据交互主要关乎数据基础架构的可用性。用户或应用会向基础架构提交查询要求,并期望在可接受的时间范围内获得响应。传统的解决方案已使人们能够轻松地提交要求、获得所需结果,获取切实可行的洞察力。但是,大数据的兴起催生出了许多全新的编程语言,阻碍了现有用户采用这些系统。此外,由于数据规模庞大,用户不得不等候数十分钟、甚至好几小时才能获得查询结果。
用户等待时间越久,获取洞察力所需时间也就越长,进而导致业务决策和满足客户期望的过程拖沓、延缓。可想而知,客户在向自身用户提供重要服务时,例如零售交易处理,可能会要求响应时间必须达到次秒级(毫秒)的水平。而在相对不太重要的业务中,客户能够接受的响应时间也许会稍长一些。数据加速能为实现更快的数据交互提供支持,即以普遍接受的方式将用户和应用与数据基础架构关联起来,并确保按要求快速提交查询结果。
为推动数据加速,企业应从众多不同的数据技术组件中选定适用的范围构建架构。这些组件包括:大数据平台、复杂事件处理、数据采集、内存数据库、缓存集群以及各种套装设备等。同时,架构组件只有经过正确的组合和架构配置,充分利用各自的互补优势,方能够实现最大价值。为了构建能够支持数据加速的数据供应链战略,企业可以从以下几点着手准备:
大数据的诞生,使相关技术门槛降至历史新低。但是,大数据同样也带来了各种挑战。为了应对这些挑战,企业应建立数据供应链,通过数据加速加快数据的迁移、处理与交互,从而使决策者得以更加迅速地捕获数据洞察力并采取行动,最终实现数据分析投资回报。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18