京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师为何有专业要求_层次级别_主要技能
数据分析师为何有专业要求
一、统计学专业
统计学贯穿数据分析的全过程,没有统计学基础,很难有专业的数据分析。数据分析的各个步骤,都要用到统计学的知识。
问卷设计时,问卷的信度是否符合要求?效度有多大?要用到统计学;
可以说,数据分析是统计学的应用。掌握统计学是数据分析师的基本功。
二、心理学专业
企业要提高市场占有率,就是要提高人心占有率,因此数据分析师研究用户心理的工作必不可少。数据分析师若懂得心理学,则能更准确的探测到用户的真实想法。
例如,在做品牌形象分析时,常会用到的是映射法,映射法就是基于心理学的数据采集方法。比如,让你对某所别墅进行描述,很难说得清,但如果让你选择图片,你对图片的认识就映射了你对这所别墅的印象。比如,你选择了劳斯莱斯车,很明显,你认为这所别墅的形象是高端的。
三、社会学专业
从经济学的角度看,人具有经济性,追求利益最大化,比如人们总是喜欢买物美价廉的产品,消费量通常会随着价格的下降而上升。但从社会学的角度看,人还具有社会性,受到社会群体心理的影响。作为数据分析师,如果没有社会学背景,很难对市场现象做出合理的解释。
四、人口学专业
人的特点影响市场的特点。年龄不同,家庭类型不同,则需求、价值观和行为特征都不一样。比如,儿童主要以生理需求为主,没有太多的社会需求;青少年开始追求时尚和潮流,但不是高收入人群,购买的频率高但可接受价格很低;人到中年,消费行为趋于理性化,强调功能、成本和技术优势;而到了老年,对价格比较敏感。
有人口学知识,数据分析师可以更好地理解到用户的差异性,有助于选择市场细分的维度,提出合理的精细化营销建议。
五、营销学专业
数据分析师常要为企业的营销决策提供支持,这就要求懂营销。
具有营销背景的数据分析师思路会更清晰、更开阔。当让他做竞争分析时,他会想到波特五个力;让他做环境分析时,他会想到PEST、让他做消费者偏好分析,他会想到科特勒用户决策流程;让他做企业业务状况分析,他会想到4P……
六、财务管理专业
诸如此类的财务管理问题是企业选择投资项目的依据、评价财务状况的指标、评估决策效果的量尺。懂得财务管理,得失一笔账,才能算得更清楚。”
数据分析师为何有专业要求·基本技能要求
可能乍一眼觉得数据分析师这个职位很高深很吓人,其实不然,各行入各眼,别看数据分析师岗位职责,任职要求这么多,说白了主要就三点要求:1)对相关业务的理解;2)掌握一到二种数据分析工具;3)良好的沟通。
数据分析师为何有专业要求·层次级别
1)业务监控:诊断当前业务是否正常?是否存在问题?业务发展是否达到预期(KPI)?如果没有达到预期,问主要问题在哪?是什么原因引起的?
2)建立分析体系:这些数据分析师已经对业务有一定的理解,对业务也相对比较熟悉,更多帮业务方建立一套分析体系,或者更高级是做成数据产品。例如:营销活动。分析师会告诉业务方,在活动前你应该分析哪些数据,从而制定恰当的营销计划。在营销过程中,你应该看哪些数据,从而及时做出营销活动调整。在营销活动,应该如何进行活动效果评估。
3)行业未来发展的趋势分析:这应该是数据分析师最高级别,有的公司叫做战略分析师/商业分析师。这个层次的数据分析师站的更高,在行业、宏观的层面进行业务分析,预测未来行业的发展,竞争对手的业务构成,帮助公司制定战略发展计划,并及时跟踪、分析市场动态,从而及时对战略进行不断优化。
数据分析师主要技能要求:
数据库知识(SQL至少要熟悉)、基本的统计分析知识、EXCEL要相当熟悉,对SPSS或SAS有一定的了解,对于与网站相关的业务还可能要求掌握GA等网站分析工具,当然PPT也是必备的。文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19