京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据将从10个方面改变制造业未来_数据分析师
● 提高生物制药生产的精度、质量和产量
在生物制药生产流程中,通常需要监控超过200个变量以确保各成分的纯度以及正在生成的物质符合要求。生物制药生产之所以具有挑战性的众多因素之一在于,因为不太明显的原因,产量的变化可能在50%到100%之间。通过使用高级分析,制造商能够追踪导致产量变化的9个主要参数,基于这些数据,他们能够提高疫苗的产量达50%,单支疫苗每年可节省约500万到1000万美元左右。
● 加速IT、制造和运营系统的整合,实现工业4.0的愿景
工业4.0是德国政府的举措,旨在提高制造业的自动化水平,以实现智能工厂的目标。大数据已经被用于优化生产计划,基于供应商、消费者、机器可用性和成本限制等。在高度管制行业(依赖于德国供应商和制造商)中的生产价值链正在通过工业4.0快速发展。随着这一举措成为激励多功能部门协同合作的催化剂,大数据和高级分析将成为其成功的关键。
● 更好地预测产品需求和生产(46%),通过多个指标了解设备性能(45%)以及更快地向消费者提供服务和支持(39%),是大数据提高生产性能的三个主要方面
这些研究结果都是来自于LNS研究所和MESA International最新的调查,他们试图研究大数据正在那些方面提供最大的制造性能改进。
● 通过六西格玛改进方法DMAIC(定义、测量、分析、改进和控制)架构整合高级分析来推动持续改进
更深入地了解DMAIC推动的改进计划的每个阶段正在发挥作用,而这方面的努力对制造性能所有其他领域的影响现在还不明显。这个领域可能使生产流程比以往任何时候都更加以客户为导向。
● 更清楚地了解供应商质量水平,以及更好地预测供应商性能
利用大数据和高级分析,制造商能够实时查看产品质量和交期准确性,并确定哪个供应商可以接受时间敏感型的订单。管理质量指标比衡量交付进度更重要。
● 在机器水平测量合规性和可追踪性成为可能
利用在所有机械设备中的传感器可以让运营管理人员即时深入了解每个设备的运作情况。部署高级分析还可以显示每个机器及其操作人员的质量、性能和培训差异。这在精简工作流程方面非常重要,并且变得越来越普遍。
● 只销售最赚钱的定制产品或者按订单生产的对生产影响最小的产品
对于很多复杂的制造商而言,定制产品或按订单生产的产品提供高于平均水平的毛利率,然而如果生产过程没有得到很好规划的话,又可能带来更高的成本。通过使用高级分,制造商们正在寻找对现有生产计划、机器调度、人员配置等影响最小的按订单生产的产品。
● 打破孤岛式的质量管理和合规系统,让它们成为企业首要任务
现在制造商应该对质量采取更具战略性的目光,不能只是满足于孤岛式的质量管理和合规系统。大数据和分析可以让制造商知道哪些参数对质量管理和合规性的影响最大,大多数这些参数是企业范围的,而不只是限于质量管理或合规部门。
● 量化日常生产对财务业绩的影响,具体到机器水平
大数据和高级分析提供了缺失的环节,它可以关联日常生产活动到财务业绩。如果能够了解在机器水平工厂是否在有效运行,生产计划人员和高级管理人员就知道如何最好地扩展规模。通过关联日常生产与财务业绩,制造商能够更好地扩展其操作规模。
● 通过监控产品和积极提供预防性维护建议,服务成为实现客户目标的战略性推动因素
制造商们开始关注更复杂的产品,需要操作系统来管理传感器。这些传感器会报告活动情况,并发送警报用于预防性维护。大数据和分析可以提供更实用的建议让客户获取更大价值。例如,通用电气公司现在正在对其喷气发动机和钻井平台这样做。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11