
大数据将从10个方面改变制造业未来_数据分析师
● 提高生物制药生产的精度、质量和产量
在生物制药生产流程中,通常需要监控超过200个变量以确保各成分的纯度以及正在生成的物质符合要求。生物制药生产之所以具有挑战性的众多因素之一在于,因为不太明显的原因,产量的变化可能在50%到100%之间。通过使用高级分析,制造商能够追踪导致产量变化的9个主要参数,基于这些数据,他们能够提高疫苗的产量达50%,单支疫苗每年可节省约500万到1000万美元左右。
● 加速IT、制造和运营系统的整合,实现工业4.0的愿景
工业4.0是德国政府的举措,旨在提高制造业的自动化水平,以实现智能工厂的目标。大数据已经被用于优化生产计划,基于供应商、消费者、机器可用性和成本限制等。在高度管制行业(依赖于德国供应商和制造商)中的生产价值链正在通过工业4.0快速发展。随着这一举措成为激励多功能部门协同合作的催化剂,大数据和高级分析将成为其成功的关键。
● 更好地预测产品需求和生产(46%),通过多个指标了解设备性能(45%)以及更快地向消费者提供服务和支持(39%),是大数据提高生产性能的三个主要方面
这些研究结果都是来自于LNS研究所和MESA International最新的调查,他们试图研究大数据正在那些方面提供最大的制造性能改进。
● 通过六西格玛改进方法DMAIC(定义、测量、分析、改进和控制)架构整合高级分析来推动持续改进
更深入地了解DMAIC推动的改进计划的每个阶段正在发挥作用,而这方面的努力对制造性能所有其他领域的影响现在还不明显。这个领域可能使生产流程比以往任何时候都更加以客户为导向。
● 更清楚地了解供应商质量水平,以及更好地预测供应商性能
利用大数据和高级分析,制造商能够实时查看产品质量和交期准确性,并确定哪个供应商可以接受时间敏感型的订单。管理质量指标比衡量交付进度更重要。
● 在机器水平测量合规性和可追踪性成为可能
利用在所有机械设备中的传感器可以让运营管理人员即时深入了解每个设备的运作情况。部署高级分析还可以显示每个机器及其操作人员的质量、性能和培训差异。这在精简工作流程方面非常重要,并且变得越来越普遍。
● 只销售最赚钱的定制产品或者按订单生产的对生产影响最小的产品
对于很多复杂的制造商而言,定制产品或按订单生产的产品提供高于平均水平的毛利率,然而如果生产过程没有得到很好规划的话,又可能带来更高的成本。通过使用高级分,制造商们正在寻找对现有生产计划、机器调度、人员配置等影响最小的按订单生产的产品。
● 打破孤岛式的质量管理和合规系统,让它们成为企业首要任务
现在制造商应该对质量采取更具战略性的目光,不能只是满足于孤岛式的质量管理和合规系统。大数据和分析可以让制造商知道哪些参数对质量管理和合规性的影响最大,大多数这些参数是企业范围的,而不只是限于质量管理或合规部门。
● 量化日常生产对财务业绩的影响,具体到机器水平
大数据和高级分析提供了缺失的环节,它可以关联日常生产活动到财务业绩。如果能够了解在机器水平工厂是否在有效运行,生产计划人员和高级管理人员就知道如何最好地扩展规模。通过关联日常生产与财务业绩,制造商能够更好地扩展其操作规模。
● 通过监控产品和积极提供预防性维护建议,服务成为实现客户目标的战略性推动因素
制造商们开始关注更复杂的产品,需要操作系统来管理传感器。这些传感器会报告活动情况,并发送警报用于预防性维护。大数据和分析可以提供更实用的建议让客户获取更大价值。例如,通用电气公司现在正在对其喷气发动机和钻井平台这样做。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23