京公网安备 11010802034615号
经营许可证编号:京B2-20210330
关于大数据的七个观点_数据分析师
在第八届网上零售年会上,阿里巴巴集团数据委员会会长车品觉表示,对于企业而言,数据一定要“从看到用”,如果所掌握的数据没有到运用的阶段,那就算不上“大数据”。
车品觉指出,在数据运用上非常重要的一点是要用在核心的决策点上,这样企业才能得到大数据的价值。“比如在广告领域,我们要给一个价。‘在什么时间点给予什么价,可以得到最好的回报’就是一个核心的决策点,大数据就要放在这个地方。”
以下是车品觉关于大数据的几个重要观点。
第一,只有两种方法可以得到大数据。一种是在自身企业外的数据,当你拿到这些数据时可以更精准提炼自己的东西。另一种是把自己的数据提供给别人,别人可以用我的数据产生更大的价值。
第二,大数据是“一把手”工程,需要企业的最高层直接负责、下达命令。这是因为,一方面,公司内部可能对于大数据本身没有信心;另一方面,数据安全性是大多数人最担心的问题。“事实上,很多企业分公司与分公司之间,大家都不一定能够相互信任。你要把我的数据给另外一个分公司,拿着我的数据,我不放心。”
第三,大数据的成本是非常大的,所以企业要首先判断哪些数据是重要的,需要被优先使用。车品觉表示,大数据出成绩的时候很美,但事实上,企业做大数据的成本是极高的,且错误率非常高。数据备份的成本、人才的培养及挖掘等都需要很大的成本。
第四:行为数据的搜集有一个时间点,可以抛弃一些过往数据,以降低成本。“行为数据是基于整个网站的设计,当整个网站设计产生了非常大的变动之后,你也没有办法还原过来的话,这个数据就开始不要了。”
第五,无线数据非常重要,已经影响到企业的底层数据,是大数据的未来。且无线数据与PC数据有很大的不同。比如无线端的数据来自于APP、WAP和HTML5,这三个渠道,每个渠道的数据源和特性都存在很大的不同。“比如无线APP是没有cookie的,也没有点击数据这一说。” 从人才的角度来讲,要把数据的人提炼成更多的商业的感觉。
第六,大数据人才的培养的重点在于培养数据中间层,这个中间层用以连接研究数据和使用数据的两方人。从人才培养的角度来说,就是要培养数据人的商业感觉。
“我们发现做大数据的人中没有很多人想用这些数据;但是想用数据的人,但是我不知道数据从哪里来。所以比较有经验的人希望能有一个数据中间层出来,让用的人可以理解有什么数据可用,让做数据的人集合经验能成为一个中间者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29