
在大数据时代,当Marketing遇上IT如何融合_数据分析师
正是围绕着大数据,CMO 与CIO 两个职能的诸多共同之处,也有着将两者联系起来的最强大的纽带。
今年1月,时任摩托罗拉系统首席营销官的Eduardo Conrado被任命为摩托罗拉系统的营销和IT高级副总裁。他目前的工作包括营销的传统职责——如产品营销、品牌、网站、内部和外部传播等;同时,IT部门和首席信息官也归他管理。
Eduardo Conrado并非特例。在大数据时代,当Marketing遇上IT ,CMO与CIO之中任何一方都无法单枪匹马奋战市场了,他们必须在大数据背景下进行角色转换和职能转型。他们担负着什么职责?应怎样扮演好自己的角色?
大数据
预言者?
汇报机制决定了公司的重心。
传统来看,IT及首席信息官(CIO)汇报的对象之一是首席财务官。如果是这样,那么IT的重心往往是成本控制,包括优化公司IT使用成本以及优化IT基础设施和团队。
另一种普遍的情况是,IT向运营部门汇报。这意味着IT部门的重心是后勤办公室,即工厂、流通中心、供应链等。
当技术日益成为商业的助推力,对摩托罗拉系统这样的一家技术公司来说,“技术是我们的业务,但更重要的是,业务即技术,”Eduardo Conrado在接受AdAge采访时表示。
随着越来越多的公司围绕消费者,IT也应当帮助推动公司的消费者参与。如果IT要对某个部门汇报的话,那么就应该向销售或营销部门汇报,因为这是面向消费者的部门,”他补充说道。
事实上,摩托罗拉系统也确实是这样做的。过去十年里,公司的营销部门已经在数字领域从事各种活动,包括监督网站、内容管理、社交平台、数据库、内部协作工具等,这些营销人非常熟悉各种分析工具。让首席营销官深度参与技术战略的制定,这是自然而然的事。
以前,摩托罗拉系统在营销部门内有传统的数字团队,而在IT部门内有单独的团队支持营销部门的数字团队。现在,这两支团队开始更紧密的合作,在营销、IT和销售之间共同进行规划。随着两个部门间工作和人才交集越来越多,如何让资源和知识更加有效的共享?在这种情况下,如果有一个机制来监督这两个平行部门之间的合作,数字营销和IT战略团队之间的协作可能更加顺畅。
于是,摩托罗拉系统内部将数字营销和IT团队合并。他们开始关注战略、关注如何与客户互动,如何定义流程等。在团队中,一半是偏技术型的营销者,另外一半人才则偏营销和销售流程。
CMIO
随着营销和大数据变得日益密不可分,首席营销官(CMO)和首席信息官(CIO)创造协作伙伴关系就变得尤为重要。首席营销官及其团队不得不依仗技术的发展来实现其营销目标,而与此同时,首席信息官及其团队也开始认识到应该更加以客户为导向,挖掘数据商业价值。
分别来自Gartner及EXperian的调研都不约而同地指向了一个趋势:CMO及CIO必须在大数据背景下进行角色转换和职能转型。
1、技术在营销中的角色更加重要。
据Gartner预计,到2017年,企业CMO将比CIO掌握更多用于购买技术服务的预算。也就是说,营销预算将超过IT预算,其中,高科技产品营销预算增长预计达到11%。而大部分增加的预算都将被用于技术方面,以帮助营销人员进行市场分析和营销自动化等活动。这部分技术包括:客户关系管理、数字营销、数据库营销、营销自动化、客户分析、移动营销、电子商务等方面。
2、CMTO对技术产品的购买决策有很大影响。
除了要掌握上面提到的各种技术,CMTO对购买技术产品的影响力将越来越大。通过右图我们可以了解到,在数字营销等八大方面,CMTO对购买决策的影响作用,均接近50%的水平。
3、CMTO需要更加注重战略而非技术。
调查结果显示,CMTO在选择和管理营销服务商、选择和管理营销技术提供者、全面负责品牌和企业传播等三方面的职责正在加大。未来十大职责及要求包括:管理技术组件、判别并利用未来新兴营销技术、冲破IT与市场部门的合作死结、理解跨渠道互动、协调并传递跨渠道信息、评估营销绩效等。
如何融合?
但是据一项最新调查显示,这样的改变并没有发生。首席营销官理事会和SAS软件研究所共同发表的一份最新报告《大数据的大角色:首席营销官和首席信息官的联合》指出,85%的首席营销官和首席信息官表示他们的合作仍有挑战。此外,只有41%的高级营销官表示与IT方面对接,39%的高级IT执行官表示和营销层面对接。
大数据或许是两者对接的连接点,如首席营销官理事会所说。“正是围绕着大数据,我们发现两个职能的诸多共同之处,也有着将两者联系起来的最强大的纽带。据61%的营销官和60%的IT执行官表示,大数据代表了平等机遇和挑战,很多都在努力适应那些进入机构的结构化和非结构化数据,管理数据流的累积和分析。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23