京公网安备 11010802034615号
经营许可证编号:京B2-20210330
物联网时代的来临让人们得以见识到一个越来越聪明的城市,这个城市运行的主体不再是大量的人力,而转化成为机器与机器的交流,是大量的数据在控制整个城市的稳定运行。随着云计算技术的高速发展,数据的整合越来越密集,越来越庞大。未来,整个世界的运行核心可能只是一个盒子,而这盒子里面装的是海量数据。届时数据安全会影响整个世界的发展。
(一)、大数据防护宁可麻烦不能偷懒
大数据规模庞大,控制范围广泛,极易成为黑客攻击的目标,在数据没得到整合之前,黑客攻击某一服务器所获得的只是某一个企业或个人的信息资产,但在大数据时代,黑客攻击某个云端服务器成功之后,就可能获取了整个城市的资源信息,甚至是更大的收获。在安全防护方面,大数据的防护方式应该更为多层,哪怕会引发操作上的麻烦也不应省略。
(二)、大数据应杜绝单一存储
即使不被攻击,大量的数据集合在一起稍有不慎就可能引发设备系统奔溃,由此带来的将是大量数据遗失,相关企业的高额经济损失,严重的将直接造成企业破产。现如今,企业发展已经离不开大规模数据堆积。所以大数据的存储绝对不能集中单一化,应实行多层次备份存储,以保证一出发生故障还有另一处数据提取来挽救危机。
(三)、不能绝对依靠相信大数据
由于大数据的精准可信让人们尝到了甜头,获得了人们的信任。但就像人类的大脑一样,存储记忆大量的数据难免会出现遗忘和混乱等“宕机”状态。大数据由海量随机序列号组成,一个微小的符号改变都可能引发蝴蝶效应影响结果的正确性,而在人们觉得大数据绝对可信的时候,这无疑成了致命威胁。所以,大数据应有特定的监测验证系统以提升使用准确性。
的特点就是大规模抓取,源头杂乱,所以存在许多的不可预测性,当然,我们不能因为可能存在的隐患而拒绝发展,但我们可以防患于未然,将风险尽量降低到可以接受的范围。智能化时代发展过于迅速,威胁无法完全杜绝,只有合理配备应急方案,才能在危险真正发生时,将其迅速控制。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10