
大数据变现:围绕数据资产构建生态圈_数据分析师
生态圈一词是马云在2011年喊出来的,阿里第一次为构建生态圈而产生的大动作发生在2012年阿里系独立公司变为事业部,从而实现了阿里巴巴的中小企业和淘宝市场体系有效的结合。这一举措将有利于阿里集团大市场的内部生态系统,最终促进一个开放、协同、繁荣的电子商务生态系统。当时我们不明就里、甚至说还很少有人想到维系和实现阿里生态圈的核心究竟是什么?而两年后的今天,随着淘宝魔方、阿里指数、阿里全息大数据模型等等阿里在大数据上的布局、升级逐步浮出水面,我们不难理解连接阿里系的生态圈的不是别的,就是它的数据资产这个核心。阿里在阿里生态圈里打通消费者的数据碎片,因为这个打通后的全息数据价值远大于原有碎片价值的累加,从而使阿里系的企业能够在原有商业运转上产生质的飞跃,并叠加出更多大于1+1的新型业态和商业逻辑。
淘宝、天猫、支付宝让阿里拥有了世界上无人能比及的、覆盖人群最多、交易量最大的交易数据,有了一个非常高的大数据起点,并且用这个起点对接淘宝旅行、高德导航、UC、快的,阿里大数据实现了在各行业的应用延伸,当然这些行业企业也再度为阿里数据添砖加瓦,让阿里数据更为多元化、细节化和现实化。这些数据还原的是一个个、一群群、一类类的人,也许有一天阿里机器人比你更了解你是什么样的人,而阿里数据现在显然比谁都更清楚消费阿芙精油的人都是群什么样的人,快的用户中有多少人以什么样的频率在消费阿芙精油。知道了人这个社会最本元的构成还不够,阿里数据还存下了商业里的流程数据,并不断让数据自修正的update从而优化商业流程;当然对于我们个体来说更为恐怖的是:但凡是只要你在阿里能够得着的地方出现,阿里数据一定在为你做点什么:或许是推荐给你一件你正要购买的商品,或许是给你展现了一段奇妙的旅行,还或许告诉你病了(得的是大数据焦虑症)。
至于阿里数据如何变现举个具体的例子。你觉得高德会跟车险有关联吗?高德正在跟保险业密谋重置我们的车险费用,你的车险不只是跟车价和以前的出险记录相关了,它还跟你的驾驶习惯、行驶路况、行驶时间,行驶地点集、个人信用有关,而这些数据可能就来自高德。而在这份保险里高德能无利可分吗?原来跟保险半毛钱关系也没有的企业,通过大数据也可以赚到保险的钱了,这就是大数据变现的实例之一。
近期多位顶级计算机科学家加盟阿里IDST(InstituteofDataScience&Technologies),可见阿里在大数据这个引擎上的布局远超出我们的想象。同时我们也相信科学家与阿里这种体量级的数据的结合,其化学反应不仅会对阿里商业帝国有着重大的意义,对人类的进化也将会如蝴蝶效应般不可估量。
再说另一个虽然没有阿里生态系大但却非常有特色和想法的生态圈打造者:乐视。
乐视生态圈
乐视的硬件是他数据的来源,同时也是他产品分发的渠道(按互联网模式他应该免费送我们才对,还收我们的钱,所以我们不能说他太便宜了);而基于受众对影视产品的观看,搜索以及评论的数据分析,指导着乐视在商业应用领域的产品打造。比如据说小时代就是这么打造出来的:乐视先用数据刻画了郭粉的用户画像,按照他们的思维模式和行为习惯翻版拍出了小时代。乐视网这个开放平台则可以让更多的文化企业其他链条接入他的生态圈。
虽然在这个逻辑下显然小米也有异曲同工之妙,但在世界票房都要因为中国抖三抖的今天,乐视的这盘文化产业的局显然是目前小米暂时还难望其项背的。
青岛红领示范图
这一类生态圈商业王国典型的特征就是跨界,他用一些核心引擎,包括技术、大数据还有资本打破了原有产业和行业的界限。他们的模型进入传统产业,就会引起产业的一次颠覆,搅动的是产业里所有元素的重置。
大数据变现之二改造原有产业,为原有产业增值增效,甚至产生新的变现模型。
C2B的定制商业模型,O2O的线上线下联通模型,P2P的新型金融模型无一不是这个范例,无一不是构建在大数据基础之上的。
这里举一个C2B的例子,今年上半年这家企业似乎一下子占领了不少重要级媒体的版面。它曾经是一家传统得不能再传统的服务企业,它在若干年前大数据还在一个实验室名词的时候,无意间走上了这条路,起缘是企业要解决生产优化和效能的问题。(看起来是一家无心插柳的前驱企业。)这家企业叫青岛红领集团有限公司。
红领声名鹊起的原因,是实现了用规模工业生产满足个性化需求这一在工业流水线企业以前不可能解决的难题。而帮助他解决这一难题的关键在于其研发了一个个性化定制平台——男士正装定制大型供应商平台RCMTM(redcollarmadetomeasure,红领西服个性化定制),这个平台其实是一套由不同体型身材尺寸集合而成的大数据处理系统。这套系统基于红领10多年在制衣生产中对大量的量体数据和版型数据的匹配建模和不断调试训练,能够做到在输入任一身体尺寸数据后,CAD会自动匹配最适合体型版型,在确定版型之后系统还会自动备料,自动派单、支持按需裁剪\\按需缝制等工序。一组客户量体数据完成定制、服务全过程,无需人工转换、纸质传递、数据完全打通、实时共享传输,每个红领生产线上的员工都是在互联网终端上工作。依靠这套系统一家做定制服装的企业却能够做到每天生产1200套西服的产能,做到一套西服的制作只需7个工作日效能。于是有了通过百万万亿大数据改造重生,于行业寒冬中获得150%成长。这是另一个大数据变现的优秀案例。
当然还有其他大数据分析下优化企业部分商业流程或效能的案例,如基于用户行为画像下优化产品设计;基于供应市场数据优化采购体系,基于物流大数据优化零售和配送效率等等。
这类型的企业中的佼佼者,也会慢慢向生态圈中过渡,他们构建的是在自己所在行业或者产业链条上打通的生态圈,数据是支撑,变现的还是自己在产业链上创造出来的附加值。这些产业生态圈会和上面那类型生态圈先在点上产生很多交集和合作,慢慢会勾兑融合成一个更大的生态圈。
大数据变现之三独立的数据服务企业,服务于多方,分取合作者的经济收益。
在大数据之前这种业态很容易让人联想到信息服务业,如咨询、市场研究、智库等。而在大数据时代,目前非常典型的是基于数据分析基础上的精准营销公司,如DSP、DMP等。他们本身的运营行为不能产生产业附加值,但擅长于数据融合、分析,利用数据挖掘与精准匹配等专业手段,通过数据分析结果优化企业的营销效能,给企业效益做加法,再从这个加法中分成。(这里要多说一个背景,客户企业在大数据方面大多在资源(人力、物力)无法做到专业和深入,所以需要相关的服务企业来做。)我们也相信随着大数据产业和技术的不断升级,这类型企业(不仅传统的这些,会有很多新型的大数据技术驱动企业)会从营销这一个点,拓展到产品、渠道、服务、供应等企业的多个方面。他们因为在一个点上着力,所以能够在这个点上做更得更深,更透,更优,成为上述两种生态圈中一个点、一个片的支撑点、服务商,从而产生自己的竞争力和价值。
DSP\\DMP在产业链上的位置图
以上描述的仅仅是现在经济界中已经看到的大数据产业,而在社会层面、政治层面甚至包括生物进化的层面大数据已经开始初露端倪。当然大数据也不是万能的,它有它的盲点和悖论,上面的三种数据业态在发展中也会碰到问题和困难,因篇幅太长不再阐述。
最后借用猎豹CMO刘新华的一句话:大数据不是一个产业,它应该成为一种企业信仰。我们可以期待在这个企业信仰下,人类的生活将会无限美好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29