京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2015国家公务员申论面试备考:大数据时代的治理智慧
当无人驾驶汽车的构想已进入实操阶段,当3D打印成为热门词汇,当阿里巴巴、京东等电商平台通过对海量的消费数据进行分析,并由此为个人贷款业务提供支持的时候,我们发现,大数据时代已经到来。
人类已经进入大数据时代。如果说计算机的普及仅仅解决了信息的可读化、可计算化问题,互联网解决了信息传递和服务问题,那么,大数据则解决了信息的分析和预测问题,大数据助力决策科学化,公共服务个性化、精准化。实践表明,大数据具有大容量、多样性、快速度、真实性等多种特征。利用数据融合、数学模型、仿真技术等,可以大大推动政府决策的科学性,甚至“揭示出原来没有想到或难以展现的关联”。全新的思维方式和行为方式,将带来全新的商业模式和发展路径。大数据带来的改变不仅使传统的思维方式和行为方式面临巨大挑战,而且在公共服务领域,它有效集成信息资源的能力,将会为政府管理理念和治理模式的转变提供强大的技术支撑。
【标准表述】
[综合分析]
大数据在当代社会的作用是多方面的。大数据分析能去伪存真,用在公共服务领域可起到事半功倍的效果。通过大数据能够建立快速反应的公共安全管理系统、数据化调控过的公共交通系统、以人为本的综合社会管理系统、智慧预测下的公共卫生与医疗系统、创意与实用兼备的环境保护系统,还能够推进智慧城市的建设,让城市生活更美好。
大数据之所以能够发挥如此巨大的作用,主要在于其多渠道的数据采集、高度开放的数据系统、精准识别的数据处理等关键技术。尤其是在智慧城市建设中,物联网是智慧城市的感觉器官,移动互联网是编织城市数据网的脉搏,云计算为城市各个单元之间协调行动、政府与公众之间有效合作提供了基础。
[问题与挑战]
大数据固然能够成就人类的伟大梦想,为中国梦的实现增添一臂之力,但是,我们也应该看到我们在大数据面前必须应对各种前所未有的挑战。
首先是数据质量问题。数据造假威胁数据质量的生命线,错误发现使数据的解读和呈现都出现致命的谬误,数据盲点导致了信息时代的信息缺席。
其次是信息安全问题。信息社会的每一个人、每一个政党、每一个国家,都处于“第三只眼”的监控之下。棱镜门事件使信息社会的国家安全受到致命威胁,亚信会议也对信息安全给予严重关切。对于个人来讲,隐私保护同样重要,亟需寻找新的制衡机制。
再次是数据独裁问题。目前数据管理最大的挑战是数据的开放与共享。通过大数据,不仅能够获得更加详尽的个人信息,而且通过进一步预测把群体特征直接强加于个人,必然导致基于数据的群体歧视。
[对策措施]
一是信息要实现共享融合,必须打破部门分割,建立以市场为主导的政府数据资源运行机制。以产业化、市场化为方向,打破数据垄断,建立以市场为主导的政府数据资源运行机制,按市场规律和风险等级分级开放政府数据资源,授权和鼓励第三方参与政府数据资源开发,并向市场购买社会数据及服务,鼓励基于大数据的服务和运营模式创新。
二是加快制定关于各类数据的产权归属、保护以及数据采集、存储、加工、传递、检索、授权应用等的法律法规,明确数据拥有者、使用者、管理者、社会第三方等各方责任权利义务,厘清公民隐私权和知情权的界限,建立符合中国国情的数据应用法律体系;
三是在国家层面出台政策,明确不同类别、不同层级政府部门在大数据建设中的定位,建立数据保密与风险分级管理机制。
公务员考试是一个选拔性考试,不是过关考试,建议各位考生,若想让申论成绩有新的提高,时刻关注申论热点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03