京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的应急管理变革_数据分析师
当前,大数据浪潮汹涌澎湃。大数据所具有的大量(volume)、高速(ve locity)、多样(variety)和真实(ve racity)的特性正在推动原有社会生产生活模式的重大变革。在应急管理领域,大数据技术的发展至少带来两个方面的革命性变化。
一方面,大数据的出现改变了突发事件的发生、发展和演化的时空模式,加深了突发事件的不确定性。数据关联和信息联通扩大了传统突发事件的影响范围,数据的高速传输也可能使某些负面信息通过互联网瞬间引爆网络群体性事件。海量个性化数据的存储和传输过程中的安全问题则孕育了超乎想象的全新风险。
另一方面,大数据又为可测量、可追踪和精细化的应急管理提供基本信息和管理工具。大数据技术可将这些纷繁复杂的多源异构数据处理成具有决策价值的有效信息。传统管理模式下,应急决策大多是依据个人经验的直觉决策(heuristic decision),而大数据技术的应用使得高度不确定性和高度时间压力下的分析决策(analytical decision)成为可能。
这两个方面的变化是相辅相成、具有逻辑关联的,前者是应急管理对象的变化,后者是应急管理方式的变化,正是由于大数据时代突发事件的形式和规律都在不断发生变化,因此适应大数据发展的应急管理方式变革势在必行。
综观世界各国应急管理的最新进展,大数据技术的应用大致体现在以下五个方面。
大数据技术在突发事件监测预警领域的应用。著名的大数据研究者迈尔·舍恩伯格和库克耶在其畅销著作《大数据时代:生活、工作与思维的大变革》中指出,“大数据的核心就是预测,是把数学算法运用到海量的数据上来预测事情发生的可能性”。并描述了一个运用大数据技术预测突发公共卫生事件的经典案例:谷歌公司通过保存和分析人们的搜索指令准确地预测了2009年甲型H1N1流感的爆发,比美国疾病预防与控制中心(CDC)依靠传统方法的预测提前了两周,为有效控制流行病传播提供了宝贵时间。美国政府在国家安全战略中引入大数据技术,用于对恐怖主义活动、黑客攻击、公共卫生事件、舆情危机等进行监测和预警。
基于大数据技术构建的辅助决策系统。危机情景下的决策始终是应急管理领域的一个重大挑战,危机决策的挑战来自于信息不完备、时间压力大等客观条件的约束。大数据技术使得基于所有数据而不是样本数据的决策成为可能。以美国为代表的发达国家开始探索基于大数据技术的辅助决策系统。美国国土安全部从2012年开始运行了第一个跨部门大数据应用试点项目——“海王星”(Neptune)和“地狱犬”(Cerberus),数据库以完全不同于国土安全部自2002年沿袭至今的方式进行了重新组织,计划将不同来源的未经分类的信息汇聚成一个“数据湖”,对海量数据的综合分析成为国家安全决策的重要参考。
大数据技术在城市管理和社会管理领域的运用。大数据将兴起于2008年的“智慧地球”和“智慧城市”建设推进到全新的阶段。城市管理的一个重要方面就是确保城市公共安全。“智慧城市”运用信息和通信技术手段感测、分析、整合城市运行核心系统的各项关键信息,城市系统的突发事件,特别是城市生命线、基础设施、重点地区的突发事件都在“智慧城市”系统的监测之中。而以“网格化管理”为特征的新型社会管理模式也通过监控录像、社区服务信息等途径不断积累大数据,这些数据对于掌握城市和社会的脆弱环节,控制和消除风险因素起到重要作用。
大数据技术对危机中个体行为模式的研究和应用。大数据时代中,由于人的各种行为都可以数据化,因此通过大数据技术分析危机中个体行为模式构筑了应急管理领域中的一个政策基础。大数据技术通过分析单个网民的传播模式研究了舆情热点事件的演化过程,大数据技术通过分析大量个体的言论和行为从而预测群体性事件发生的可能性,大数据技术通过分析人们接受各类灾害(如暴雨、飓风、地震等)的预警信息之后的行为反应以设计更加有效的风险沟通策略,大数据技术追踪个体在灾害中的逃生和自救行为,从而提升应急疏散和第一响应的能力。
大数据技术在应急资源配置中的管理。应急管理是在危机情景下组织应急人员、调配应急物资以缓解和消除危机负面影响的过程。借助于大数据技术,人员流动和物资流动都可以转化为各种形式的大数据,如通过通讯基站可以快速确定通过手机等通讯设备发出应急信号的人员位置,而急救车、消防车等应急设备的运动轨迹可以通过GPS进行定位和追踪。通过对这些数据集的分析可以针对灾害发生的时空规律对应急资源进行优化配置,对危机情景下应急物资的调运进行最优的线路设计。大数据技术使得应急资源的布局和运用更加精准、高效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19