京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的应急管理变革_数据分析师
当前,大数据浪潮汹涌澎湃。大数据所具有的大量(volume)、高速(ve locity)、多样(variety)和真实(ve racity)的特性正在推动原有社会生产生活模式的重大变革。在应急管理领域,大数据技术的发展至少带来两个方面的革命性变化。
一方面,大数据的出现改变了突发事件的发生、发展和演化的时空模式,加深了突发事件的不确定性。数据关联和信息联通扩大了传统突发事件的影响范围,数据的高速传输也可能使某些负面信息通过互联网瞬间引爆网络群体性事件。海量个性化数据的存储和传输过程中的安全问题则孕育了超乎想象的全新风险。
另一方面,大数据又为可测量、可追踪和精细化的应急管理提供基本信息和管理工具。大数据技术可将这些纷繁复杂的多源异构数据处理成具有决策价值的有效信息。传统管理模式下,应急决策大多是依据个人经验的直觉决策(heuristic decision),而大数据技术的应用使得高度不确定性和高度时间压力下的分析决策(analytical decision)成为可能。
这两个方面的变化是相辅相成、具有逻辑关联的,前者是应急管理对象的变化,后者是应急管理方式的变化,正是由于大数据时代突发事件的形式和规律都在不断发生变化,因此适应大数据发展的应急管理方式变革势在必行。
综观世界各国应急管理的最新进展,大数据技术的应用大致体现在以下五个方面。
大数据技术在突发事件监测预警领域的应用。著名的大数据研究者迈尔·舍恩伯格和库克耶在其畅销著作《大数据时代:生活、工作与思维的大变革》中指出,“大数据的核心就是预测,是把数学算法运用到海量的数据上来预测事情发生的可能性”。并描述了一个运用大数据技术预测突发公共卫生事件的经典案例:谷歌公司通过保存和分析人们的搜索指令准确地预测了2009年甲型H1N1流感的爆发,比美国疾病预防与控制中心(CDC)依靠传统方法的预测提前了两周,为有效控制流行病传播提供了宝贵时间。美国政府在国家安全战略中引入大数据技术,用于对恐怖主义活动、黑客攻击、公共卫生事件、舆情危机等进行监测和预警。
基于大数据技术构建的辅助决策系统。危机情景下的决策始终是应急管理领域的一个重大挑战,危机决策的挑战来自于信息不完备、时间压力大等客观条件的约束。大数据技术使得基于所有数据而不是样本数据的决策成为可能。以美国为代表的发达国家开始探索基于大数据技术的辅助决策系统。美国国土安全部从2012年开始运行了第一个跨部门大数据应用试点项目——“海王星”(Neptune)和“地狱犬”(Cerberus),数据库以完全不同于国土安全部自2002年沿袭至今的方式进行了重新组织,计划将不同来源的未经分类的信息汇聚成一个“数据湖”,对海量数据的综合分析成为国家安全决策的重要参考。
大数据技术在城市管理和社会管理领域的运用。大数据将兴起于2008年的“智慧地球”和“智慧城市”建设推进到全新的阶段。城市管理的一个重要方面就是确保城市公共安全。“智慧城市”运用信息和通信技术手段感测、分析、整合城市运行核心系统的各项关键信息,城市系统的突发事件,特别是城市生命线、基础设施、重点地区的突发事件都在“智慧城市”系统的监测之中。而以“网格化管理”为特征的新型社会管理模式也通过监控录像、社区服务信息等途径不断积累大数据,这些数据对于掌握城市和社会的脆弱环节,控制和消除风险因素起到重要作用。
大数据技术对危机中个体行为模式的研究和应用。大数据时代中,由于人的各种行为都可以数据化,因此通过大数据技术分析危机中个体行为模式构筑了应急管理领域中的一个政策基础。大数据技术通过分析单个网民的传播模式研究了舆情热点事件的演化过程,大数据技术通过分析大量个体的言论和行为从而预测群体性事件发生的可能性,大数据技术通过分析人们接受各类灾害(如暴雨、飓风、地震等)的预警信息之后的行为反应以设计更加有效的风险沟通策略,大数据技术追踪个体在灾害中的逃生和自救行为,从而提升应急疏散和第一响应的能力。
大数据技术在应急资源配置中的管理。应急管理是在危机情景下组织应急人员、调配应急物资以缓解和消除危机负面影响的过程。借助于大数据技术,人员流动和物资流动都可以转化为各种形式的大数据,如通过通讯基站可以快速确定通过手机等通讯设备发出应急信号的人员位置,而急救车、消防车等应急设备的运动轨迹可以通过GPS进行定位和追踪。通过对这些数据集的分析可以针对灾害发生的时空规律对应急资源进行优化配置,对危机情景下应急物资的调运进行最优的线路设计。大数据技术使得应急资源的布局和运用更加精准、高效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27