
"怎样用“大数据”降低网络安全成本_数据分析师
面对网络威胁的不断快速翻新升级,很多企业中安全管理策略存在着过期风险,在落后的威胁预警机制下,企业很有可能成为数据泄露的受害者。然而另一方面,在很多注重风险评估的用户中,虽然网络安全风险得到了一定的控制,但却普遍遇到了人力成本攀升的难题。安全与成本看起来正在成为一对难以协调的矛盾。那么,如何在不添人手的情形下,有效地阻止网络安全危机爆发?如何在更广泛的数据分析中,让系统更容易得出正确的安全策略呢?WatchGuard认为,大数据的思想或许能帮上忙。
如今,安全专业人员匮乏的情况非常普遍。一份来自全球企业增长咨询公司Frost & Sullivan的报告显示:在访问了12000多位信息安全专业人士的调查中,有56%的受访者表示他们的机构缺少网络安全方面的专业人才,同时也难以筹措资金负担这方面的投入。
在新西兰首都惠灵顿,一家为用户提供云基础架构和安全托管的服务商便遇到了这个问题。虽然信息安全日益被重视使得许多客户选择了他们这家安全服务公司,但在收益增加的同时,作为MSSP安全服务商,他们与客户的情况类似,同样遇到了缺人的难题。公司的决策层表示,从安全风险的角度考虑,绝不能放过每条可疑的日志,因为这是帮助客户排除威胁,保障服务质量的关键。但人手不够、尤其是高级网络威胁分析人员紧缺的情况越来越明显,再加上工程师都被繁琐的日志分析工作拖住了,这消耗了所有人的精力,并严重制约了公司业务的发展速度。
在寻找解题答案的过程中,这家MSSP选择了WatchGuard推出的Dimension解决方案。全新的分析系统采用了云计算[注]和大数据技术,非常方便地就能洞察到安全威胁和发展趋势的关键点。公司技术总监表示:他们的业务部门完全可以放开手脚,因为Dimension云安全网络解决方案帮助技术部门实现了智能化、敏捷化、简单化的日志分析工作,并在威胁预警、追踪和分析能力不再完全依靠人力。而Dimension的分析报告更成为了业务收入的增长点,自动化实时生成的威胁评估报告,以及对应的安全策略建议,都为MSSP的客户提供了最高级别的服务。
Dimension工作在更高效和便捷的云操作环境中,并在日志分析方面采用最先进的大数据技术作为底层支撑。思想与技术的融合,让Dimension在第一时间洞察网络变化,并为用户推荐更专业的安全策略。在树形层级菜单的引导下,管理员和决策者都可拥有属于自己的数据报表,高效率的挖掘出埋在网络深处危险地带。另外,基于全球威胁地图的展现层设计和超过70种数据集合的报告,更可以让威胁探测的结果清晰可见,这包括动态的仪表盘、专业的指导意见、优秀客户的实践结果。
WatchGuard 中国区市场总监万熠表示:在我们与Slashdot网站共同发起的一份调研报告中显示,日志数据的成倍增长,让51%的安全专家已经无法在第一时间找出网络中可疑的应用,而工作在能见度极低的日志管理平台上,更不可能定位那些威胁企业核心机密的源头。这些都使得安全评估、威胁源头追踪,以及法规遵从工作都难以再从日志入手。而Dimension恰恰可以帮助用户在日志管理和威胁分析中实现大与快。
据了解,作为全球知名的网络及内容安全解决方案提供商,WatchGuard推出的实时化、可视性解决方案Dimension,与旗下的XTM统一化威胁管理平台形成了更先进的组合方案,并在市场上呈现了一系列的良好反馈。现在Dimension在VMware之外已经对Mircosoft Hyper-V等更多虚拟化平台提供了支撑,这也为WatchGuard2013年第4则季度创下了23%增长的财务业绩新高。
如今,以数据窃取威胁为代表的新一波攻击已经到来,特别是对于新近投入网络业务洪流的中国企业而言,专业网络安全人员的匮乏,就更需要专业的网络威胁防护系统进行补充,以消除安全运营成本不断攀升的难题。若要阻止危机爆发,企业需要以最简洁明了的方式对信息系统健康状况进行广泛的数据评估,这与采用随机样本分析的意义相差甚远。而来自Dimension国外成熟用户的热情反馈,充分展现了云和大数据技术在网络威胁管理中的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08