京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据可视化-信息图背后的心理学_数据分析师
随着数据导向在企业中蔚然成风,数据展示类的信息界面也变得重要起来。
拥有可视化数据和交互式界面的它正成为商业用户手中重要的工具。更重要的是数据类信息界面也在以app的形式融入普通用户的生活,帮助管理日常活动,如预算追踪和健康管理。
那么是什么让数据类信息界面如此诱人?人们内心渴望,而又被数据类界面完美呈现的这些因素是什么?
人们喜欢控制感。可以想象一下如果自己处于一个完全黑暗的环境内。很快你体内的“紧急开关”就将被启动,驱使你去了解周遭情况和了解你可以控制什么。
从进化的角度来理解,让周围环境处于我们掌控中,我们才更可能生存下来。潜意识会基于感知到的可控层级帮助我们堤防各种危险(打还是逃)。
数据类信息界面就给了我们这种控制感。不论是了解花销动态的个人财政数据界面还是帮助企业追踪营销预算的营销数据界面,都是提高你对情况的感知,给你基因内渴求的控制感。
数据可视化""="" width="" 600""="" height="" 435""="">
This Marketo dashboard帮助市场团队对预算保持同步,确保花销可控。
大多数的数据界面使用如下三种策略来建立控制感:
数据可视化""="" width="" 600""="" height="" 215""="">
Calvin and Hobbes by Bill Watterson
在Jakob Nielsen的“Short-Term Memory and Web Usability”一文中,指出人类在短期记忆中不能记住太多信息,特别是多个抽象的感念或者不寻常的数据。他引用的他人研究建议短期记忆的数量不应该超过七个,这些信息存在我们的大脑里面也只有20秒钟。
数据界面就是为了克服短期记忆的难题。通过在一个屏幕用户的眼睛跨度内呈现所有相关数据,减少对短期记忆的依赖。不需记忆任何东西,因为它们都在你眼前。
然而,在大多情况下,数据会多到在一屏之内显示不完。因此数据界面围绕短期记忆的限制做了如下三件事:
为了更好的理解这一点,对比如下两种展示数据的方式:一个表格和一张折线图。
数据可视化""="" width="" 600""="" height="" 141""="">
数据可视化""="" width="" 600""="" height="" 482""="">
记忆折线图中的上下趋势比表格中的准确数字要简单得多
在概览屏中提供了关键数据的快照,减少短期记忆的负担。但用户也可以深入了解如果他们需要特定数据的详细信息。
数据可视化""="" width="" 600""="" height="" 789""="">
The RescueTime的概览提供了关键指标的鸟瞰图,并且可以进一步了解细节。
将信息分解成可消化的小块,可以降低用户的认知负担。将相关的信息放到同一个tab下面,方便用户来分析他们。
数据可视化""="" width="" 600""="" height="" 445""="">
Mint将数据分解成吐下tab:概览,交易,预算,目标,趋势,投资和如何更省。
保持简单!这一原则在商业和现实生活中同样适用。
比如有个库存管理系统。如果使用纸笔,将花费好几个小时来维持同步入库和出库订单的记录(更别提这么做需要的腿脚),有了数字化的数据界面,这些时间可以被大幅衰减。
数据可视化""="" width="" 600""="" height="" 646""="">
Stitch Labs就是这样一个库存管理系统,可以让商家同时监控多个销售渠道的库存。
随着响应式设计的普及,这些数据信息将能够跨设备使用,让用户可以通过台式机、笔记本或其它移动设备访问该数据。
数据可视化""="" width="" 600""="" height="" 198""="">
The FitBit dashboard可以在多个设备上使用。
任何将数据类信息作为关键服务的产品,都需要将以上用户的心理需求牢记在心。用户喜欢控制感,她们的短期记忆很有限,他们喜欢简单的东西。这三个因素应该成为所有数据信息界面设计的基础。了解你们的用户需求,将它们加入你的设计实践中,这样你就能建立完美的数据信息界面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19