京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据可视化-信息图背后的心理学_数据分析师
随着数据导向在企业中蔚然成风,数据展示类的信息界面也变得重要起来。
拥有可视化数据和交互式界面的它正成为商业用户手中重要的工具。更重要的是数据类信息界面也在以app的形式融入普通用户的生活,帮助管理日常活动,如预算追踪和健康管理。
那么是什么让数据类信息界面如此诱人?人们内心渴望,而又被数据类界面完美呈现的这些因素是什么?
人们喜欢控制感。可以想象一下如果自己处于一个完全黑暗的环境内。很快你体内的“紧急开关”就将被启动,驱使你去了解周遭情况和了解你可以控制什么。
从进化的角度来理解,让周围环境处于我们掌控中,我们才更可能生存下来。潜意识会基于感知到的可控层级帮助我们堤防各种危险(打还是逃)。
数据类信息界面就给了我们这种控制感。不论是了解花销动态的个人财政数据界面还是帮助企业追踪营销预算的营销数据界面,都是提高你对情况的感知,给你基因内渴求的控制感。
数据可视化""="" width="" 600""="" height="" 435""="">
This Marketo dashboard帮助市场团队对预算保持同步,确保花销可控。
大多数的数据界面使用如下三种策略来建立控制感:
数据可视化""="" width="" 600""="" height="" 215""="">
Calvin and Hobbes by Bill Watterson
在Jakob Nielsen的“Short-Term Memory and Web Usability”一文中,指出人类在短期记忆中不能记住太多信息,特别是多个抽象的感念或者不寻常的数据。他引用的他人研究建议短期记忆的数量不应该超过七个,这些信息存在我们的大脑里面也只有20秒钟。
数据界面就是为了克服短期记忆的难题。通过在一个屏幕用户的眼睛跨度内呈现所有相关数据,减少对短期记忆的依赖。不需记忆任何东西,因为它们都在你眼前。
然而,在大多情况下,数据会多到在一屏之内显示不完。因此数据界面围绕短期记忆的限制做了如下三件事:
为了更好的理解这一点,对比如下两种展示数据的方式:一个表格和一张折线图。
数据可视化""="" width="" 600""="" height="" 141""="">
数据可视化""="" width="" 600""="" height="" 482""="">
记忆折线图中的上下趋势比表格中的准确数字要简单得多
在概览屏中提供了关键数据的快照,减少短期记忆的负担。但用户也可以深入了解如果他们需要特定数据的详细信息。
数据可视化""="" width="" 600""="" height="" 789""="">
The RescueTime的概览提供了关键指标的鸟瞰图,并且可以进一步了解细节。
将信息分解成可消化的小块,可以降低用户的认知负担。将相关的信息放到同一个tab下面,方便用户来分析他们。
数据可视化""="" width="" 600""="" height="" 445""="">
Mint将数据分解成吐下tab:概览,交易,预算,目标,趋势,投资和如何更省。
保持简单!这一原则在商业和现实生活中同样适用。
比如有个库存管理系统。如果使用纸笔,将花费好几个小时来维持同步入库和出库订单的记录(更别提这么做需要的腿脚),有了数字化的数据界面,这些时间可以被大幅衰减。
数据可视化""="" width="" 600""="" height="" 646""="">
Stitch Labs就是这样一个库存管理系统,可以让商家同时监控多个销售渠道的库存。
随着响应式设计的普及,这些数据信息将能够跨设备使用,让用户可以通过台式机、笔记本或其它移动设备访问该数据。
数据可视化""="" width="" 600""="" height="" 198""="">
The FitBit dashboard可以在多个设备上使用。
任何将数据类信息作为关键服务的产品,都需要将以上用户的心理需求牢记在心。用户喜欢控制感,她们的短期记忆很有限,他们喜欢简单的东西。这三个因素应该成为所有数据信息界面设计的基础。了解你们的用户需求,将它们加入你的设计实践中,这样你就能建立完美的数据信息界面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27