
如何让网站分析报告更有价值_数据分析师
从哪里入手撰写网站分析报告?报告中应该选择和使用哪些指标?如何让分析结果更有价值?这些都是在我们在撰写网站分析报告时经常遇到的问题。本篇文章分享一个创建网站分析报告的流程,通过四个步骤让分析报告变的更有价值。
一, 明确分析目的,挖掘有价值的分析需求
网站的商业目的产生分析需求,而需求的价值则直接影响分析结果的价值。因此在开始撰写一份网站分析报告前,我们先要仔细思考并充分挖掘分析需求的价值。那么,什么样的分析需求是有价值的分析需求呢?我们先来看三类最常见的客户分析需求。
第一类客户有明确的分析需求,第二类客户有一个非常模糊的需求,第三类客户无法清晰的表达自己的分析需求。对于第二类和第三类客户在进行分析前,必须要明确他们的分析目的和需求。以及这些分析需求与最终商业目标间的关系。没有明确的目的就没有分析需求的产生,也没有分析的意义。在这种情况下,你也不会知道该如何下手去进行分析,更不要谈分析结果的价值。然而,并不是所有客户提的需求都会有价值。有时候客户向我们表达的信息其实并不是他内心中真正想要的。这时需要我们对客户需求背后的含义进行分析,获得真正有价值的需求。分析需求的价值直接决定了分析结果的价值。而有价值的需求多半都会和如何为客户带来收益相关。
二,确定分析方法和报告逻辑
在明确了有价值的客户需求后,我们进入第二步,选择需要使用的分析方法和报告中的逻辑。首先是选择分析方法。选择哪种分析方法多半是由客户的需求和问题决定的。对于初级客户,多半会以递进的方式提出三个问题:表现怎么样?为什么会这样?以及如何修改并提高?这三个问题几乎可以套用到任何场景下,比如广告投放分析,网站结构分析,页面质量分析,转化分析等等等等。对于这三个问题,通常情况下我们可以分别使用对比分析,细分分析和质量分析三种方法进行解答。
对于报告的逻辑,我们给出一个通用的分析逻辑,用户—影响—行动—转化—收益。这个逻辑可以和大部分广告投放方式和网站业务模式结合。 我们将分析逻辑中不同的阶段映射到用户,广告,网站等不同的部分中。并为每一部分中的目的和问题选择准确的衡量指标。
三,使用准确的指标进行度量
前面两部我们明确了分析目的,分析方法和报告的逻辑。下面开始为分析中不同的问题选择准确的指标进行衡量。指标的选择将直接影响到分析的结果。如果指标选择不当,那么分析结果也可能是错误的。选择指标的规则只有一个,就是能准确衡量所要分析的问题。这个说起来容易,但很多时候我们却经常用错,甚至有些时候为了报告的丰满,避免犯错,将很多无效的指标进行罗列。造成数据堆积。
下面是一个例子:我们使用哪个指标可以准确的衡量一个页面的质量?跳出率,退出率,浏览量,转化率这些指标都可以,但我们需要针对页面不同的功能和使用场景选择最准确的那个指标,而不是将所有相关的指标都放在上面。即使是针对同一个页面也是如此。
如何衡量页面质量?
四,使用图表和业务语言展现分析结果
最后一步,也是最重要的一步,就是对前面所有的工作进行呈现,让不懂网站分析和数据的客户也能快速理解报告中的信息。这里有两部分,第一是选择合适的图表对分析结果进行展示。一图胜千言。第二是将网站分析的专业指标转换为客户可以理解的业务语言。并按业务场景为客户进行解读。我们必须承认,没有客户对指标感兴趣,大部分客户根本就不想知道Visitor和Visit的区别,他们通用也不会对你的数字感兴趣,他们需要的是通过数据和分析对业务问题的解读。因此我们不能只是简单的在分析报告中罗列数字和指标。还需要告诉客户指标在这类场景下说明的具体业务问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29