京公网安备 11010802034615号
经营许可证编号:京B2-20210330

作者:马立和 高振娇 韩锋
来源:大数据DT(ID:hzdashuju)
内容摘编自《数据库高效优化:架构、规范与SQL技巧》
select table_name,index_name,leaf_blocks,num_rows,clustering_factor from user_indexes where table_name in ('T1','T2'); TABLE_NAME INDEX_NAME LEAF_BLOCKS NUM_ROWS CLUSTERING_FACTOR -------------- -------------- ---------------- ---------- --------------------- T1 SYS_C0025294 6275 3200000 31520 T2 SYS_C0025295 13271 3200000 632615
select * from t2 where id between '3199990' and '3200000'; -------------------------------------------------------------------------------- | Id | Operation | Name |Rows|Bytes |Cost(%CPU)| Time | -------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 6| 390 | 5 (0)|00:00:01| | 1 | TABLE ACCESS BY INDEX ROWID| T2 | 6| 390 | 5 (0)|00:00:01| |* 2 | INDEX RANGE SCAN | SYS_C0025295 | 6| | 3 (0)|00:00:01| -------------------------------------------------------------------------------- Statistics ---------------------------------------------------------- 1 recursive calls 0 db block gets 13 consistent gets 0 physical reads
案例03 规范SQL写法好处多
1. 案例说明select ... from ... where ( ( order_creation_date>= to_date(20120208,'yyyy-mm-dd') and order_creation_date<to_date(20120209,'yyyy-mm-dd') ) or ( send_date>= to_date(20120208,'yyyy-mm-dd') and send_date<to_date(20120209, 'yyyy-mm-dd') ) ) andnvl(a.bd_id,0) = 1 -------------------------------------------------------------------------------- | Id | Operation | Name |Cost (%CPU)| Time |Pstart | Pstop | -------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 2470K(100)| | | | | 1 | SORT GROUP BY | | | | | | | 2 | TABLE ACCESS BY GLOBAL INDEX ROWID | XXXX | 5 (0) | 00:00:01 | ROW L | ROW L | | 3 | NESTED LOOPS | | 2470K (1) | 08:14:11 | | | | 4 | VIEW |VW_NSO_1| 2470K (1) | 08:14:10 | | | | 5 | FILTER | | | | | | | 6 | HASH GROUP BY | | 2470K (1)| 08:14:10 | | | | 7 | TABLE ACCESS BY GLOBAL INDEX ROWID | XXXX | 5 (0)| 00:00:01 | ROW L | ROW L | | 8 | NESTED LOOPS | | 2470K (1)| 08:14:10 | | | | 9 | SORT UNIQUE | | 2340K (2)| 07:48:11 | | | | 10 | PARTITION RANGE ALL | | 2340K (2)| 07:48:11 | 1 | 92 | | 11 | TABLE ACCESS FULL | XXXX | 2340K (2)| 07:48:11 | 1 | 92 | | 12 | INDEX RANGE SCAN | XXXX | 3 (0)| 00:00:01 | | | | 13 | INDEX RANGE SCAN | XXXX | 3 (0)| 00:00:01 | | | --------------------------------------------------------------------------------
select ... from ... where order_creation_date >= to_date(20120208,'yyyy-mm-dd') and order_creation_date<to_date(20120209,'yyyy-mm-dd') union all select ... from ... where send_date>= to_date(20120208,'yyyy-mm-dd') and send_date<to_date(20120209,'yyyy-mm-dd') and nvl(a.bd_id,0) = 5
select ... from ... where ( ( order_creation_date>= to_date(20120208,'yyyymmdd') and order_creation_date<to_date(20120209,'yyyymmdd') ) or ( send_date>= to_date(20120208,'yyyymmdd') and send_date<to_date(20120209,'yyyymmdd') ) ); -------------------------------------------------------------------------------- | Id | Operation | Name | Cost(%CPU)|Time | Pstart | Pstop | -------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 42358 (1)| 00:08:29 | | | | 1 | SORT AGGREGATE | | | | | | | 2 | CONCATENATION | | | | | | | 3 | PARTITION RANGE SINGLE | | 17393 (1)| 00:03:29 | 57 | 57 | |* 4 | TABLE ACCESS FULL | XXXX | 17393 (1)| 00:03:29 | 57 | 57 | |* 5 | TABLE ACCESS BY GLOBAL INDEX ROWID | XXXX | 24966 (1)| 00:05:00 | ROWID | ROWID | |* 6 | INDEX RANGE SCAN | XXXX | 658 (1)| 00:00:08 | | | ---------------------------------------------------------------------------------
select... from xxx a join xxx b on a.order_id = b.lyywzdid left join xxx c on b.gysid = c.gysid whereb.cdate>= to_date('2012-03-31', 'yyyy-mm-dd') – 3 and ... a.send_date>= to_date('2012-03-31', 'yyyy-mm-dd') - 1 and a.send_date<to_date('2012-03-31', 'yyyy-mm-dd'); -------------------------------------------------------------------------------- |Id | Operation |Name | Rows | Bytes | Cost (%CPU) |Pstart|Pstop| -------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | 104 | 9743(1)| | | | 1 | HASH JOIN OUTER | | 1 | 104 | 9743(1)| | | | 2 | TABLE ACCESS BY LOCAL INDEX ROWID | XXXX | 1 | 22 | 0(0)| 1189 | 1189| | 3 | NESTED LOOPS | | 1 | 94 | 9739(1)| | | | 4 | PARTITION RANGE ITERATOR | | 1032 | 74304 | 9739(1)| 123 | 518 | | 5 | TABLE ACCESS FULL | XXXX | 1032 | 74304 | 9739(1)| 123 | 518 | | 6 | PARTITION RANGE SINGLE | | 1 | | 0(0)| 1189 | 1189 | | 7 | INDEX RANGE SCAN | XXXX | 1 | | 0(0)| 1189 | 1189 | | 8 | TABLE ACCESS FULL | XXXX | 183 | 1830 | 3(0)| | | --------------------------------------------------------------------------------
exec dbms_stats.gather_index_stats( ownname=>'xxx', indname=>'xxx', partname=>'PART_xxx', estimate_percent => 10);
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27