
【导语】:“数据科学家”是近年来增长最快的工作之一。那么如今成为数据科学家需要哪些技能呢?本文我们就来带你了解这一问题。
CDA数据分析师 出品
编译:Mika
“数据科学家”是近年来增长最快的工作之一。这是一个令人兴奋的高薪职业,并为你提供了大量的发展机会。而且,由于合格数据科学家的供应尚未赶上巨大的业务需求,因此职位需求仍然很多。那么,在2020年成为数据科学家需要具备哪些技能?我们研究并描绘了数据科学家的画像。
我们发现在2020年数据科学家有这些特点:
1 、编程语言
下面让我们来具体看看。
首先,如果没有强大的编程技能,就无法成为数据科学家。如今,数据科学家将比以往更广泛地使用通用语言。
根据我们的年度研究:
01、Python备受青睐
毫不夸张的说 Python的受欢迎程度正在上升。
Python是数据科学家进行统计建模的首选语言。难怪全球最大的技术进步专业技术组织—IEEE会将Python视为编程语言的“大魔王”。
Python不仅是最受使用者欢迎的,实际上在雇主所需要的技能方面,它也非常接近霸主地位。
它的相关薪资是全球最高水平,雇主对Python作为首选技能的需求飞涨。数字不会说谎,在财富五百强企业的数据科学家中有70%的人使用Python。
这些年来 Python和R都越来越受欢迎。财富五百强企业的组织中也反映这一点。
此外Python是许多行业中,使用高级分析进行业务和产品开发的第一编程语言。
02、SQL越来越受欢迎
那SQL呢?
SQL的受欢迎度迅速增长,几乎赶上了第二名的R。
当今的企业每天创建五百亿字节的数据,这使SQL成为数据科学家工具箱中的重要工具。因为它对于访问、更新、插入、操作和修改大量数据至关重要,它还可以与R和Python等其他脚本语言顺利集成。
此外,Tableau和Power BI等BI工具在很大程度上依赖于它,从而增加它的使用率。因此,如果你正在寻找众多行业的绝佳职业机会,那么选择Python R和SQL是绝对不会错的。而且,如果你是渴望在数据科学家职业生涯中迈出第一步的初学者,剩下要做的就是开始学习!
2 、工作经验
另一个有趣发现是:第一年工作的数据科学家人数减少了(占比13%),比起之前(2018年和2019年占比25%)。
几年前,随着数据科学刚刚兴起,公司正在招聘具有不同背景的专业人员,并对他们进行内部培训。结果在某些情况下,聘用了相对水平基础的求职者担任高级数据科学家职位。
我们的数据表明,随着越来越多的人获得该领域的经验,第一年工作的数据科学家所占比例较小。经验在招聘中起着更大的作用,这一观念在发现中加强了 。
2020年,数据科学家专业人员的平均工作经验为8.5年。因此,在当今的就业市场中,需要在分析职位上积累必要的工作经验,然后才能准备好数据科学家的职位。也许先试试数据分析师的职位更有效。
但是数据又怎么说?我们的研究检查了数据科学家之前的职位,以及之前的一到两个头衔。
样本显示:
当我们查看即将进入当前数据科学职位时,数据马上就改变了。
3 、学历
那么学历方面呢?当前的绝大多数的数据科学家学历成以下特点:
我们可以说从业者需要以本科以上学位为目标。通常,在20位数据科学家中有19位拥有学士学位。但是,只要具备所需的技术技能和准备工作 ,本科生也可以找到相关工作。
4、专业背景
数据科学家从事的研究领域如何?哪个专业提高了求职者成为数据科学家的机会?
根据我们的研究,样本中55%的数据科学家主要来自以下三种专业:
所有这些都是技术课程,可为毕业生做好工作的定量和分析方面的准备。
——总结
因此,让我们总结描述一下。2020年典型数据科学家职业道路如下:
人们常说 “就算你不知道罗马怎么走,条条大路也通罗马”。在这儿,情况有所不同。
如果你想成为一名数据科学家,研究其他人走过的数据科学家职业道路,并从他们的经验中学习的人的职业道路,这将是十分有益的。我们希望这段视频对你有所帮助,并会指导你正确的方向,有问题可后台给我们留言哦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01