京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【导语】:“数据科学家”是近年来增长最快的工作之一。那么如今成为数据科学家需要哪些技能呢?本文我们就来带你了解这一问题。
CDA数据分析师 出品
编译:Mika
“数据科学家”是近年来增长最快的工作之一。这是一个令人兴奋的高薪职业,并为你提供了大量的发展机会。而且,由于合格数据科学家的供应尚未赶上巨大的业务需求,因此职位需求仍然很多。那么,在2020年成为数据科学家需要具备哪些技能?我们研究并描绘了数据科学家的画像。
我们发现在2020年数据科学家有这些特点:
1 、编程语言
下面让我们来具体看看。
首先,如果没有强大的编程技能,就无法成为数据科学家。如今,数据科学家将比以往更广泛地使用通用语言。
根据我们的年度研究:
01、Python备受青睐
毫不夸张的说 Python的受欢迎程度正在上升。
Python是数据科学家进行统计建模的首选语言。难怪全球最大的技术进步专业技术组织—IEEE会将Python视为编程语言的“大魔王”。
Python不仅是最受使用者欢迎的,实际上在雇主所需要的技能方面,它也非常接近霸主地位。
它的相关薪资是全球最高水平,雇主对Python作为首选技能的需求飞涨。数字不会说谎,在财富五百强企业的数据科学家中有70%的人使用Python。
这些年来 Python和R都越来越受欢迎。财富五百强企业的组织中也反映这一点。
此外Python是许多行业中,使用高级分析进行业务和产品开发的第一编程语言。
02、SQL越来越受欢迎
那SQL呢?
SQL的受欢迎度迅速增长,几乎赶上了第二名的R。
当今的企业每天创建五百亿字节的数据,这使SQL成为数据科学家工具箱中的重要工具。因为它对于访问、更新、插入、操作和修改大量数据至关重要,它还可以与R和Python等其他脚本语言顺利集成。
此外,Tableau和Power BI等BI工具在很大程度上依赖于它,从而增加它的使用率。因此,如果你正在寻找众多行业的绝佳职业机会,那么选择Python R和SQL是绝对不会错的。而且,如果你是渴望在数据科学家职业生涯中迈出第一步的初学者,剩下要做的就是开始学习!
2 、工作经验
另一个有趣发现是:第一年工作的数据科学家人数减少了(占比13%),比起之前(2018年和2019年占比25%)。
几年前,随着数据科学刚刚兴起,公司正在招聘具有不同背景的专业人员,并对他们进行内部培训。结果在某些情况下,聘用了相对水平基础的求职者担任高级数据科学家职位。
我们的数据表明,随着越来越多的人获得该领域的经验,第一年工作的数据科学家所占比例较小。经验在招聘中起着更大的作用,这一观念在发现中加强了 。
2020年,数据科学家专业人员的平均工作经验为8.5年。因此,在当今的就业市场中,需要在分析职位上积累必要的工作经验,然后才能准备好数据科学家的职位。也许先试试数据分析师的职位更有效。
但是数据又怎么说?我们的研究检查了数据科学家之前的职位,以及之前的一到两个头衔。
样本显示:
当我们查看即将进入当前数据科学职位时,数据马上就改变了。
3 、学历
那么学历方面呢?当前的绝大多数的数据科学家学历成以下特点:
我们可以说从业者需要以本科以上学位为目标。通常,在20位数据科学家中有19位拥有学士学位。但是,只要具备所需的技术技能和准备工作 ,本科生也可以找到相关工作。
4、专业背景
数据科学家从事的研究领域如何?哪个专业提高了求职者成为数据科学家的机会?
根据我们的研究,样本中55%的数据科学家主要来自以下三种专业:
所有这些都是技术课程,可为毕业生做好工作的定量和分析方面的准备。
——总结
因此,让我们总结描述一下。2020年典型数据科学家职业道路如下:
人们常说 “就算你不知道罗马怎么走,条条大路也通罗马”。在这儿,情况有所不同。
如果你想成为一名数据科学家,研究其他人走过的数据科学家职业道路,并从他们的经验中学习的人的职业道路,这将是十分有益的。我们希望这段视频对你有所帮助,并会指导你正确的方向,有问题可后台给我们留言哦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23