京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文章来源: 学术头条( ID: SciTouTiao)
作者: 赵雅琦
【导读】如今,AI 越来越聪明,让很多人开始担心,有朝一日是否会被AI取代自己的工作。实际上,目前为止,AI还处在弱人工智能阶段,绝大多数人类的工作暂时无法被 AI 取代,但是,当前, AI 却可以决定你是否能够获得一份工作。
马上又是一年校招季。你是否有过被各大公司的网申系统支配的恐惧,是否做线上测试做到怀疑人生,是否投过无数的简历而石沉大海?
郁闷的背后,或许就是因为你的简历和测试结果,没有通过 AI 的初筛。
利用人工智能进行简历筛选,当下已经不是什么新鲜事。根据调研机构的分析,几乎所有财富 500 强公司(98% 以上)和越来越多的中小企业使用求职者跟踪系统过滤简历,然后再将其提交给人力招聘经理。
不仅仅如此,现在人工智能已经逐渐深入面试领域。这意味着,当你通过了人工智能的简历初筛后,你的第一轮面试也将由人工智能主导进行。
比如在美国,使用人工智能进行面试的现象已经十分普遍,当中包括希尔顿、联合利华和高盛等大公司,已经有超过 100 万求职者接受了 AI 的面试,一些大学甚至开设一些培训课程来帮助学生如何在 AI 面试时表现更好。
2020 年,新冠肺炎疫情给 AI 招聘工具又带来了新的发展契机。AI 招聘工具不仅可以帮助企业更加快速地对大量应聘者进行初步筛选,节省人力资源工作者的时间,也可以避免招聘方和应聘者的密切接触。这种优势在疫情全球化的背景下被凸显出来。如今,许多国内的公司也加入采用 AI 面试的大军中。
但是,AI 招聘工具真的更优于普通的人力筛选,能够带来更加公平公正的招聘环境吗?
实际上,人工智能只是机器可以“学习”决策的一种高级方式。程序员没有给出特定的命令,而是向 AI 提供了大量数据,通过重复测试对其进行“训练”以达到筛选适合自己公司简历的目的。因此给AI提供的数据库就显得尤为重要。
AI 根据以前的招聘结果来了解目标的工作要求和招聘模式,并通过识别简历中的关键词,来选取合适的候选人。这不仅可以根据候选人的工作技能和以前的工作经验,而且还可以根据组织的招聘文化来进一步筛选。这意味着,简历中的信息和用词对于通过AI初筛非常重要。
许多人认为 AI 简历筛选相对于人工筛选是更加公平的一种方式。但是,事实上并不是如此乐观。
早在两年前,亚马逊机器学习专家就发现他们的 AI 招聘工具有一个明显的倾向——在筛选简历过程中,重男轻女。
而这种倾向最终被归结为人工智能训练样本的问题。因为在具体机器学习的过程中,亚马逊针对 500 个特定职位开发了相对应的识别模型,并对过去 10 年的简历中的 5 万个关键词进行识别,最后进行重要程度的优先级排序。而这个数据库中大部分求职者为男性,而女性相关的数据太少,因此 AI 会误以为没有这类关键词的女性简历不那么重要。
许多开发 AI 招聘工具的公司声称,通过精心设计和培训其学习的模型,就能够在招聘流程中专门解决各种系统性偏见。但专家认为,这不是一个简单的任务:AI 算法在发展的过程中就一直带有性别,种族等歧视的问题。这些公司采用的策略是清除应用程序中的识别信息,依靠匿名面试和技能测试,甚至调整职位的措辞以吸引尽可能多的应聘者。这意味着背后更长时间的学习过程和更大量的数据。但这并不是一个简单的过程。
此外,以 AI 招聘工具在获得广泛信任之前面临的最大障碍之一是缺乏公共数据。这些机器学习的数据是非公开的,人们无法确认提高招聘中算法公平性的努力是否真的有效。由于围绕公平就业和工作场所歧视的责任问题,许多公司不愿公开分享此类信息。因为如果证明使用 AI 证明工具歧视某些群体,公司可能会面临严重的法律后果。
经过人工智能训练的视频面试技术可以分析面试者的面部特征、情绪、表情和语气,从而选择出最合适的候选人。在这个使用技术自动化的招聘过程中,语音识别、个性洞察、语气分析、答案的相关性、情感识别和心理语言学都被用于其中。
在很长一段时间里,人们认为面部表情能可靠地传达情绪。因此 AI 公司销售用于识别面部表情的软件作为 AI 面试的基础也是可靠的。但心理学家们仍然对 AI 识别人类的面部表情并判断其情绪这件事表示怀疑。
许多研究人员认为面部表情在不同的背景和文化之间差异很大。例如,有研究发现,尽管西方人和东亚人对面孔如何表现出疼痛有相似的概念,但他们对快乐的表达却有不同的看法。而这会影响 AI 在面试过程中对候选人的判断。
此外,在人工智能视频面试过程中,考生对人工智能如何分析自己紧张的抽搐或微笑,或许是眉毛的抬起,都会感到忐忑不安。这种忧虑是人工智能面试过程中显露出来的苦恼原因,会影响整体结果。
同时情绪也会因面试者的情况不同而不同。比如头痛、痛苦的分手,甚至是亲人的去世,都会导致一个人原本阳光的性格暂时受挫。而在人际互动中,考生可以向面试官说明情况,面试官会综合考虑,但这在人工智能视频面试中是不可能的。
面部的物理疤痕,如中风、面部疤痕,甚至是最近注射的肉毒杆菌,都会修改面部表情。人类面试官也会考虑到这些,而人工智能则没有能力进行这样的考虑。
在美国,AI 视频面试中的老大哥 HireVue,令各位求职者闻风丧胆。HireVue 声称可以通过 1.5 万个不同的维度(包括肢体语言、语音模式、眼神活动、做题速度、声音大小等)对候选人进行评分。其一套标准的面试时间为 30 分钟,包括 6 个问题,从中可以得出 500000 个数据点,然后算法将参考这些数据来评估面试者的表现。
这些算法根据其数据库中约 25000 条面部和语言信息对申请人进行评估。这些信息是根据以前对“成功的员工”,即那些已经走上工作岗位的优秀员工的面试结果编制而成的。
其中 350 个语言元素包括应聘者的语气、他们使用的被动或主动词、句子的长度和他们说话的速度等标准,分析的数千项面部特征包括眉毛、眉毛上扬、眼睛睁开或闭合的程度、嘴唇收紧、下巴上扬和微笑。
这就意味着,在面试过程中你的一举一动都可能成为你被淘汰的原因。很多人都表示,这种方式会更让人紧张。就像是 360 度环绕式审查,让人感觉很不舒服。
疫情下的招聘季虽然在一定程度上受阻,但这也成就了招聘“新模式”——AI 招聘工具的深入应用。
不可否认,AI 招聘工具确实可以帮助企业更高效的解决招聘问题,尤其是在筛选初级应聘者,例如实习生、校招生等方面。高速的筛选简历不仅仅可以节约公司时间,也可以给应聘者更快速的反馈。未来它也将成为人力资源工作的中流砥柱。
但是我们也不能忽视 AI 招聘工具目前所存在的问题,其适用性仍存在很大的局限性。面对更加成熟的社招应聘者,他们可能更加需要与面试官当面交谈,来进行一个双向选择。
尤其是从 AI 面试的角度上来看,在面部表情识时带来的负面效果是不能忽视的。现阶段,AI 无法解析人类的心智,其面试结果的精准性是值得怀疑的。因此在雇佣方和候选人两个角度,都应该更理智地看到 AI 招聘工具带来的招聘市场的变化,也应该更加理智地面对 AI 招聘工具的使用。
对于这个招聘季中你可能遇到的人工智能 HR,你怎么看?
排版:赵辰霞
编审:王新凯
资料来源:
https://spectrum.ieee.org/tech-talk/at-work/tech-careers/ai-tools-bias-hiring
https://www.ifanr.com/1272558
https://www.nature.com/articles/d41586-020-00507-5
https://theconversation.com/facial-analysis-ai-is-being-used-in-job-interviews-it-will-probably-reinforce-inequality-124790
https://towardsdatascience.com/your-next-job-interview-may-be-with-an-ai-robot-34dbf4da6340
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27