
导读:本文详解阿里巴巴1688日常业务中的榜单算法。
作者:阿里集团 新零售技术事业群 CBU技术部
来源:大数据DT(ID:hzdashuju)
内容摘编自《阿里巴巴B2B电商算法实战》
在1688日常的业务场景中,榜单(如图6-14所示)一直以来都对买家起到了很好的风向标作用,但在日常场景中,运营对榜单的人工干预较大,人力成本较高,同时多是大颗粒度的投放,并没有进行深层的细分挖掘。
▲图6-14 榜单产品示意图
随着我们对流量和商品的进一步挖掘,更多的细分主题市场、流量特征被挖掘出来,使得在细分主题市场上生成榜单,并对流量做精准的匹配变成可能。在日常,以类目为主线,在细粒度的主题市场上生成了上万个榜单,投放于榜单会场中,并个性化地呈现在买家面前。
01 榜单生成
传统的榜单生成需要大量的人力参与,所以让人在大促的时候生成榜单,成本会非常大。也正因为如此,我们尝试用纯算法的方式自动化生成。
与人工生成榜单相比,算法生成榜单无论是在榜单的多样性还是生产效率上都有非常大的优势,如图6-15所示,但在榜单的准确度和重复度上,可能不及人工生成的榜单。所以,这次算法生成榜单要在保证效率和多样性的基础上,再提高准确度,同时降低榜单语义上的重复。
▲图6-15 榜单生成过程示意图
在榜单生成上,我们刚开始考虑直接用叶子类目,这种做法的好处是可以非常快地对商品进行聚合,并用叶子类目的名称对榜单进行定义,然后进行排序并展示给用户。
但是这也会有问题,问题在于不同的行业类目的层级和细分程度是不一样的。就以女装为例,连衣裙是女装的一个叶子类目,但是生成一个连衣裙榜,这个榜单个性化程度还是太粗,凡是偏好连衣裙的用户看到的榜单内容还是完全一致的。用户会迅速产生使用疲劳。
从算法的角度来讲,榜单生成可以看成对指定的一批商品,根据商品特征进行聚类,然后对聚类后的内容进行定义的过程,如图6-16所示,其中属性词为基于商品标题和属性的电商命名体识别,品类词为基于商品标题识别的品类词+类目信息+威尔逊置信区间打分。
▲图6-16 榜单主题生成过程示意图
这样就可以得到每个商品对应的属性词和品类词。将这些属性词和品类词制作成商品的标签,然后利用属性词和品类词的组合来生成榜单。假设商品类目和属性如下所示,定义榜单主题集合为收脚运动裤、垂钓头灯、户外登山鞋。
利用以上方式可以快速从0到1生成初始榜单,并且绝大部分主题效果是不错的,但还是会出现雷同的主题。考虑到在无线会场推荐的时候,如果根据用户行为召回榜单却出现雷同的主题榜单,那么用户体验会非常差,也会浪费流量,因此在初始榜单生成后,需要对榜单进行合并归一化。
在生成的榜单中可能会出现类似下面这样的榜单,从产品的角度来看,这类榜单必须合并。
仅仅从名称入手,榜单3是比较好合并的,而榜单1和榜单2就不太好合并了。榜单的合并必须从榜单中的商品集合入手。这里我们用了jaccard相似度计算的方式解决这个榜单合并的问题。
假设A榜单的商品集合为A,B榜单的商品集合为B,那么通过jaccard相似度计算的公式,A与B的交集除以A与B的并集,就得到榜单A和榜单B的相关度了。相关度越高,两个榜单就越好合并。
利用这个方法,可以非常快速地找到两个相似的榜单,但是如果直接拿jaccard相似度来计算会有一些极端情况。比如要计算A和B两个榜单的相关度,假设A榜单中所有的商品几乎都出现在了B榜单中,但是A榜单的商品集合相对较小,B榜单的商品集合很大,那么根据jaccard相关度计算公式,两个榜单的相关度会非常小,从而使两个榜单无法合并。这个时候我们需要把jaccard的相关度算法做个小改进:
其中A为A和B中元素较少的榜单集合。如果发现A榜单和B榜单内的商品集合相关度高,那么就把A榜单合并到B榜单中,这样就可以比较好地规避上面提到的问题。
02 榜单召回推荐
榜单召回主要考虑用户的实时足迹偏好和类目偏好两个维度,如图6-17所示。
▲图6-17 榜单召回策略示意图
主要的召回策略如下所示。
03 榜单内商品排序
为了保证榜单的共识性,并不会对榜单内部商品进行个性化排序。对榜单内部的商品,按照大促所属的不同周期选择不同的排序方案。预热期按照买家的访问和下单的情况进行排序,大促爆发期则按照商品的实时GMV进行排序。
当然,也可以引入机器学习和深度学习构建排序模型,这部分内容和搜索、推荐比较类似,就不展开陈述了。
04 榜单个性化文案
1. 背景
榜单作为商品内容化的重要载体,如何展示更丰富的信息,起到“种草”、辅助成交转化的作用,一直是这一产品优化的方向。
我们通过智能文案技术,为榜单生成定制化的描述文案,通过一句话概括榜单内商品的功能功效和设计亮点,使其不只是商品的简单聚合,还能打出特有的内容心智。整体技术方案如图6-18所示,我们尝试加入风格控制,目的是在智能文案生成的过程中控制文案的风格。
▲图6-18 榜单文案算法模型
2. 数据预处理
我们采用基于单品的短亮点文案数据进行模型训练。榜单作为相同细分品类商品的聚合,包含的商品属于相同的品类并具有相似的属性,因此可以采用单品文案模型进行生成。
在测试数据上,我们首先选取了各榜单头部N个商品的标题,进行分词后,以TF-IDF算法计算词权重。以当前榜单中的词,在相同叶子类目的所有榜单中出现的频率作为其逆文档频率(IDF),与其在当前榜单中出现的频率(TF)相乘后进行排序,旨在选出当前榜单中最具有代表性的K个关键词,作为模型的输入。
3. 风格控制
榜单作为产品化组件,往往会在不同主题的日常与大促会场进行插入。因此,需要配合不同的使用场景,生成不同风格的榜单文案。
我们通过命名实体识别的方式,选出营销服务、款式元素、功能功效、新品、人群、修饰等实体词作为限定的风格词,采用风格化控制文案模型,根据需求的不同,分别生产出偏营销、偏细节描述、偏“种草”、偏节日氛围等不同风格的榜单文案,韩版连衣裙榜单风格文案示例如下所示。
4. 人群个性化文案
文案的个性化一直是文案生成的优化方向。我们在生成文案时,将不同人群的历史偏好特征考虑在内,旨在生成更符合用户兴趣的文案,实现更好的转化效果。
我们统计了用户在各叶子类目下的点击行为,选取了用户点击商品标题、卖点文案中的高频词,以及用户在相应叶子类目下的搜索词,作为用户偏好特征,并通过聚类按照相似偏好划分人群,得到不同人群在各叶子类目下的点击和搜索高频词。
我们认为,这些词更符合相应人群对当前类目商品的需求与表述习惯。我们将其编码后输入生成模型进行人群控制,针对各人群生成个性化的榜单文案,示例如下所示。
个性化榜单数量十分庞大,智能文案解决的就是给榜单命名及描述榜单的问题,让榜单不是单纯地罗列商品,不同的榜单也有多样的描述,如图6-19所示。
▲图6-19 榜单个性化文案效果图
关于作者:阿里巴巴CBU技术部(1688.com),作为阿里集团新制造和新零售的重要技术生力军,CBU技术团队15年来一直以技术之力赋能千万中小企业,沉淀了一系列极具B类特色的交易、支付、营销、采购、分销技术产品,促进B类全链路商业效率优化。
本文摘编自《阿里巴巴B2B电商算法实战》,经出版方授权发布。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01