京公网安备 11010802034615号
经营许可证编号:京B2-20210330
导读:本文详解阿里巴巴1688日常业务中的榜单算法。
作者:阿里集团 新零售技术事业群 CBU技术部
来源:大数据DT(ID:hzdashuju)
内容摘编自《阿里巴巴B2B电商算法实战》
在1688日常的业务场景中,榜单(如图6-14所示)一直以来都对买家起到了很好的风向标作用,但在日常场景中,运营对榜单的人工干预较大,人力成本较高,同时多是大颗粒度的投放,并没有进行深层的细分挖掘。
▲图6-14 榜单产品示意图
随着我们对流量和商品的进一步挖掘,更多的细分主题市场、流量特征被挖掘出来,使得在细分主题市场上生成榜单,并对流量做精准的匹配变成可能。在日常,以类目为主线,在细粒度的主题市场上生成了上万个榜单,投放于榜单会场中,并个性化地呈现在买家面前。
01 榜单生成
传统的榜单生成需要大量的人力参与,所以让人在大促的时候生成榜单,成本会非常大。也正因为如此,我们尝试用纯算法的方式自动化生成。
与人工生成榜单相比,算法生成榜单无论是在榜单的多样性还是生产效率上都有非常大的优势,如图6-15所示,但在榜单的准确度和重复度上,可能不及人工生成的榜单。所以,这次算法生成榜单要在保证效率和多样性的基础上,再提高准确度,同时降低榜单语义上的重复。
▲图6-15 榜单生成过程示意图
在榜单生成上,我们刚开始考虑直接用叶子类目,这种做法的好处是可以非常快地对商品进行聚合,并用叶子类目的名称对榜单进行定义,然后进行排序并展示给用户。
但是这也会有问题,问题在于不同的行业类目的层级和细分程度是不一样的。就以女装为例,连衣裙是女装的一个叶子类目,但是生成一个连衣裙榜,这个榜单个性化程度还是太粗,凡是偏好连衣裙的用户看到的榜单内容还是完全一致的。用户会迅速产生使用疲劳。
从算法的角度来讲,榜单生成可以看成对指定的一批商品,根据商品特征进行聚类,然后对聚类后的内容进行定义的过程,如图6-16所示,其中属性词为基于商品标题和属性的电商命名体识别,品类词为基于商品标题识别的品类词+类目信息+威尔逊置信区间打分。
▲图6-16 榜单主题生成过程示意图
这样就可以得到每个商品对应的属性词和品类词。将这些属性词和品类词制作成商品的标签,然后利用属性词和品类词的组合来生成榜单。假设商品类目和属性如下所示,定义榜单主题集合为收脚运动裤、垂钓头灯、户外登山鞋。
利用以上方式可以快速从0到1生成初始榜单,并且绝大部分主题效果是不错的,但还是会出现雷同的主题。考虑到在无线会场推荐的时候,如果根据用户行为召回榜单却出现雷同的主题榜单,那么用户体验会非常差,也会浪费流量,因此在初始榜单生成后,需要对榜单进行合并归一化。
在生成的榜单中可能会出现类似下面这样的榜单,从产品的角度来看,这类榜单必须合并。
仅仅从名称入手,榜单3是比较好合并的,而榜单1和榜单2就不太好合并了。榜单的合并必须从榜单中的商品集合入手。这里我们用了jaccard相似度计算的方式解决这个榜单合并的问题。
假设A榜单的商品集合为A,B榜单的商品集合为B,那么通过jaccard相似度计算的公式,A与B的交集除以A与B的并集,就得到榜单A和榜单B的相关度了。相关度越高,两个榜单就越好合并。
利用这个方法,可以非常快速地找到两个相似的榜单,但是如果直接拿jaccard相似度来计算会有一些极端情况。比如要计算A和B两个榜单的相关度,假设A榜单中所有的商品几乎都出现在了B榜单中,但是A榜单的商品集合相对较小,B榜单的商品集合很大,那么根据jaccard相关度计算公式,两个榜单的相关度会非常小,从而使两个榜单无法合并。这个时候我们需要把jaccard的相关度算法做个小改进:
其中A为A和B中元素较少的榜单集合。如果发现A榜单和B榜单内的商品集合相关度高,那么就把A榜单合并到B榜单中,这样就可以比较好地规避上面提到的问题。
02 榜单召回推荐
榜单召回主要考虑用户的实时足迹偏好和类目偏好两个维度,如图6-17所示。
▲图6-17 榜单召回策略示意图
主要的召回策略如下所示。
03 榜单内商品排序
为了保证榜单的共识性,并不会对榜单内部商品进行个性化排序。对榜单内部的商品,按照大促所属的不同周期选择不同的排序方案。预热期按照买家的访问和下单的情况进行排序,大促爆发期则按照商品的实时GMV进行排序。
当然,也可以引入机器学习和深度学习构建排序模型,这部分内容和搜索、推荐比较类似,就不展开陈述了。
04 榜单个性化文案
1. 背景
榜单作为商品内容化的重要载体,如何展示更丰富的信息,起到“种草”、辅助成交转化的作用,一直是这一产品优化的方向。
我们通过智能文案技术,为榜单生成定制化的描述文案,通过一句话概括榜单内商品的功能功效和设计亮点,使其不只是商品的简单聚合,还能打出特有的内容心智。整体技术方案如图6-18所示,我们尝试加入风格控制,目的是在智能文案生成的过程中控制文案的风格。
▲图6-18 榜单文案算法模型
2. 数据预处理
我们采用基于单品的短亮点文案数据进行模型训练。榜单作为相同细分品类商品的聚合,包含的商品属于相同的品类并具有相似的属性,因此可以采用单品文案模型进行生成。
在测试数据上,我们首先选取了各榜单头部N个商品的标题,进行分词后,以TF-IDF算法计算词权重。以当前榜单中的词,在相同叶子类目的所有榜单中出现的频率作为其逆文档频率(IDF),与其在当前榜单中出现的频率(TF)相乘后进行排序,旨在选出当前榜单中最具有代表性的K个关键词,作为模型的输入。
3. 风格控制
榜单作为产品化组件,往往会在不同主题的日常与大促会场进行插入。因此,需要配合不同的使用场景,生成不同风格的榜单文案。
我们通过命名实体识别的方式,选出营销服务、款式元素、功能功效、新品、人群、修饰等实体词作为限定的风格词,采用风格化控制文案模型,根据需求的不同,分别生产出偏营销、偏细节描述、偏“种草”、偏节日氛围等不同风格的榜单文案,韩版连衣裙榜单风格文案示例如下所示。
4. 人群个性化文案
文案的个性化一直是文案生成的优化方向。我们在生成文案时,将不同人群的历史偏好特征考虑在内,旨在生成更符合用户兴趣的文案,实现更好的转化效果。
我们统计了用户在各叶子类目下的点击行为,选取了用户点击商品标题、卖点文案中的高频词,以及用户在相应叶子类目下的搜索词,作为用户偏好特征,并通过聚类按照相似偏好划分人群,得到不同人群在各叶子类目下的点击和搜索高频词。
我们认为,这些词更符合相应人群对当前类目商品的需求与表述习惯。我们将其编码后输入生成模型进行人群控制,针对各人群生成个性化的榜单文案,示例如下所示。
个性化榜单数量十分庞大,智能文案解决的就是给榜单命名及描述榜单的问题,让榜单不是单纯地罗列商品,不同的榜单也有多样的描述,如图6-19所示。
▲图6-19 榜单个性化文案效果图
关于作者:阿里巴巴CBU技术部(1688.com),作为阿里集团新制造和新零售的重要技术生力军,CBU技术团队15年来一直以技术之力赋能千万中小企业,沉淀了一系列极具B类特色的交易、支付、营销、采购、分销技术产品,促进B类全链路商业效率优化。
本文摘编自《阿里巴巴B2B电商算法实战》,经出版方授权发布。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16