
想必大家在学习数据分析的时候,一定接触过ETL,那么关于ETL大家了解到什么程度呢?跟小编一起来复盘一下吧!
一、ETL概念
ETL全称是:Extract-Transform-Load,是将业务系统的数据经过抽取(Extract)、清洗转换(Transform)之后加载(Load)到数据仓库的过程。其目的是将企业中那些分散、零乱、标准不统一的数据整合到一起,从而为企业的决策提供分析依据。 ETL为BI项目一个非常重要的环节, 往往在BI项目中,ETL会占用我们整个项目至少1/3的时间,可以说ETL设计的好坏会直接关系到BI项目的成败。
二、ETL关键技术
1.数据的抽取(Extract)
首先需要确定数据源,也就是要弄明白数据是从哪几个业务系统中来,每个业务系统的数据库服务器运行什么DBMS;是否有手工数据存在,存在的话,数据量是多少;是否有非结构化的数据存在等。我们需要定义数据接口,对每一个源文件及系统中的每一个字段进行详细说明。之后确定数据抽取的方法,例如:需要确定是主动抽取还是由源系统推送?是按每日抽取还是每月抽取?以及是增量抽取还是全量抽取?
2.数据的清洗转换(Transform)
(1)数据清洗(Cleaning)
数据清洗的主要任务是清洗掉那些不符合要求的数据,将清洗的结果交给业务主管部门,并确认是直接清洗掉,还是由业务单位修正之后再次抽取。
不符合要求的数据主要包括:不完整的数据、错误的数据、重复的数据这三类。
(2)数据转换
数据转换一般包括:
空值处理,也就是捕获字段空值,并将其加载或替换为其他含义数据,或者数据分流问题库
数据拆分,根据实际业务需求对数据进行拆分,例如对身份证号拆分,拆分行政区划、出生日期、性别等
数据验证,时间规则、业务规则、自定义规则
数据替换,替换由于业务因素而导致的那些无效数据、缺失数据
数据关联,与其他数据进行关联,以保障数据完整性
3.数据加载(Load)
将清洗和转换后的数据装载到对应的表库中是ETL过程的最后步骤。采用什么样的方法装载数据,关键取决于所执行操作的类型和需要装载的数据量。当对应库为关系数据库时,通常有两种装载方式:
(1)直接使用SQL语句进行insert、update、delete操作。
(2)采用批量装载方法,例如bcp、bulk、关系数据库特有的批量装载工具或者api。
三、ETL日志、警告发送
1、 ETL日志
ETL日志主要分为三类。
(1)执行过程日志::在ETL执行过程中每一步的记录,记录每一次运行过程中各步骤的起始时间,影响的数据量,以流水账形式记录。
(2)错误日志::某个模块出错时的日志,会记录出错的时间、出错的模块以及其它相关出错的信息等。
(3)总体日志:只是记录ETL开始和结束时间以及否成功等信息。
如果我们使用ETL工具,那些ETL工具会也自动产生日志,这些日志也可以看做ETL日志的一部分。
记录日志的有助于我们随时知道ETL运行情况,一旦出现错误,我们可以知道是哪里出错。
2、 警告发送
若ETL出现错误,不仅会形成ETL错误日志,并且会向系统管理员发送警告。警告发送的方式有很多种,通常会采用向系统管理员发送邮件的形式,并且会附上出错的相关信息,方便管理员排查错误。
ETL是BI项目的关键环节,也是一个长期的过程,需要不断的发现问题,并解决问题,才能让ETL运行效率更高,为BI项目后期开发提供更加准确与高效的分析数据。
四、ETL 模式
ETL主要有四种实现模式,分别为:触发器模式、增量字段、全量同步、日志比对
五、ETL 工具
我们在选择ETL工具时,需要考虑从工具对平台和数据源的支持程度,集成性和开放性、抽取和装载的性能、数据转换和加工的性能,以及侵入性的高低,是否管理和调度功能等方面综合考虑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05