
想必大家在学习数据分析的时候,一定接触过ETL,那么关于ETL大家了解到什么程度呢?跟小编一起来复盘一下吧!
一、ETL概念
ETL全称是:Extract-Transform-Load,是将业务系统的数据经过抽取(Extract)、清洗转换(Transform)之后加载(Load)到数据仓库的过程。其目的是将企业中那些分散、零乱、标准不统一的数据整合到一起,从而为企业的决策提供分析依据。 ETL为BI项目一个非常重要的环节, 往往在BI项目中,ETL会占用我们整个项目至少1/3的时间,可以说ETL设计的好坏会直接关系到BI项目的成败。
二、ETL关键技术
1.数据的抽取(Extract)
首先需要确定数据源,也就是要弄明白数据是从哪几个业务系统中来,每个业务系统的数据库服务器运行什么DBMS;是否有手工数据存在,存在的话,数据量是多少;是否有非结构化的数据存在等。我们需要定义数据接口,对每一个源文件及系统中的每一个字段进行详细说明。之后确定数据抽取的方法,例如:需要确定是主动抽取还是由源系统推送?是按每日抽取还是每月抽取?以及是增量抽取还是全量抽取?
2.数据的清洗转换(Transform)
(1)数据清洗(Cleaning)
数据清洗的主要任务是清洗掉那些不符合要求的数据,将清洗的结果交给业务主管部门,并确认是直接清洗掉,还是由业务单位修正之后再次抽取。
不符合要求的数据主要包括:不完整的数据、错误的数据、重复的数据这三类。
(2)数据转换
数据转换一般包括:
空值处理,也就是捕获字段空值,并将其加载或替换为其他含义数据,或者数据分流问题库
数据拆分,根据实际业务需求对数据进行拆分,例如对身份证号拆分,拆分行政区划、出生日期、性别等
数据验证,时间规则、业务规则、自定义规则
数据替换,替换由于业务因素而导致的那些无效数据、缺失数据
数据关联,与其他数据进行关联,以保障数据完整性
3.数据加载(Load)
将清洗和转换后的数据装载到对应的表库中是ETL过程的最后步骤。采用什么样的方法装载数据,关键取决于所执行操作的类型和需要装载的数据量。当对应库为关系数据库时,通常有两种装载方式:
(1)直接使用SQL语句进行insert、update、delete操作。
(2)采用批量装载方法,例如bcp、bulk、关系数据库特有的批量装载工具或者api。
三、ETL日志、警告发送
1、 ETL日志
ETL日志主要分为三类。
(1)执行过程日志::在ETL执行过程中每一步的记录,记录每一次运行过程中各步骤的起始时间,影响的数据量,以流水账形式记录。
(2)错误日志::某个模块出错时的日志,会记录出错的时间、出错的模块以及其它相关出错的信息等。
(3)总体日志:只是记录ETL开始和结束时间以及否成功等信息。
如果我们使用ETL工具,那些ETL工具会也自动产生日志,这些日志也可以看做ETL日志的一部分。
记录日志的有助于我们随时知道ETL运行情况,一旦出现错误,我们可以知道是哪里出错。
2、 警告发送
若ETL出现错误,不仅会形成ETL错误日志,并且会向系统管理员发送警告。警告发送的方式有很多种,通常会采用向系统管理员发送邮件的形式,并且会附上出错的相关信息,方便管理员排查错误。
ETL是BI项目的关键环节,也是一个长期的过程,需要不断的发现问题,并解决问题,才能让ETL运行效率更高,为BI项目后期开发提供更加准确与高效的分析数据。
四、ETL 模式
ETL主要有四种实现模式,分别为:触发器模式、增量字段、全量同步、日志比对
五、ETL 工具
我们在选择ETL工具时,需要考虑从工具对平台和数据源的支持程度,集成性和开放性、抽取和装载的性能、数据转换和加工的性能,以及侵入性的高低,是否管理和调度功能等方面综合考虑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29