京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:Mika
数据:真达
后期:泽龙
【导读】
随着自热食品越来越备受消费者的追捧,各种自热小火锅、自热米饭也成了妥妥的网红食品。我们今天就来聊一聊自热食品。
python技术部分请直接看第三部分。
Show me data,用数据说话
今天我们聊一聊 自热食品
疫情期间,在宅在家里的日子,主打一人食概念的自热食品备受关注。自热火锅、自热米饭、即食酸辣粉、即食螺蛳粉等方便食品的销量迎来大幅度增长。光是今年春节,自热火锅的销售暴涨就惊起讨论无数。
自热火锅,自热米饭们就这么成为了新的网红食品,持续霸占着电商销售量榜首,你吃过自热火锅吗?哪款自热食品卖得最好?今天我们就带你用数据来解读这些自热食品。
01“万物皆可自热”
自热食品就这么火了
随着自热食品越来越备受消费者的追捧,各种自热小火锅、自热米饭也成了妥妥的网红食品。一时间,各种自热食品品牌如雨后春笋涌出。自热食品的市场规模也逐年扩大,预计今年将达到40亿元。
来源:《自热食品网络关注度分析报告》—微热点大数据研究院
超市里曾经被泡面牢牢占据的方便食品货架,迅速被自热火锅、自热米饭、自热面抢走半壁江山。
目前自热食品的入局企业不仅有传统的火锅巨头,如海底捞、小龙坎;还有像三只松鼠、良品铺子等零食厂商;同时还有像自嗨锅莫小仙等主打速食品类的新兴品牌。
根据莫小仙的数据,在疫情期间的整体销量同比增长近400%。而自嗨锅3月份公布的数据显示,其线上订单量在疫情期间增长了200%-300%。
其实像外卖、速冻、泡面和眼下潮头上的各种自热锅,本质都是“懒人经济”。同样是方便食品,泡个面还得烧水,速冻食品还得开火加热,而自热锅多方便,比起方便面自热锅在选择上好歹有肉有菜有饭有面,选择上略胜一筹。
02全网哪款自热火锅卖得最好?
我们使用Python获取了淘宝网自热食品相关的商品销售数据,共有4403条数据。
自热食品品类月销量
首先我们看看自热食品都有哪些类别。我们可以看到,卖得最好的是各种自热火锅,以超过190多万的月销量一骑绝尘。排在第二位的是自热米饭,销售量超过64万。排在后面的还有自热方便面、自热粉丝、自热烧烤等等。
哪款自热食品卖的最好?
那么都是哪些自热食品卖得最好呢?下面看到产品月销量排名top10。排在前三位的月销量都超过了12万,分别是椒吱自热小火锅、阿宽自热米饭和辣味客重庆自热小火锅。
自热食品店铺销量排行
都是哪些店铺占据着自热食品销量的前列呢?
通过分析我们发现,卖的做多的是天猫超市。那么具体的店铺方面,前三位分别是莫小仙、自嗨锅以及川蜀老味道。辣味客、白家陈记等店紧随其后。
自热食品标题词云
整理自热食物的标题后我们发现:“即时”、“速食”、“自热”、“懒人”等词都常常出现,果然是懒人经济,就是讲究个方便和快速,让你撕开包装,不需过多的操作就能吃上。类别上主要集中在“火锅”、“米饭”、“麻辣烫”、“面类”等。
自热食品店铺地区分布
这些自热食品的店铺都分布在哪些地区呢?从销量靠前的商品我们也可以猜到,这方面四川绝对是霸主,全网的自热食品店铺数量排名中,四川以1140家店铺称霸。
其次广东和上海分别以1007和1002家店位居二三。
自热食品都卖多少钱?
再看到自热食品的价格,可以看到30元以下的超过了半数,占比62.78%。这也是大众普遍能接受的价格,价格再高的话还不如点份外卖了。
03教你用Python分析
全网自热食品数据
我们使用Python获取了淘宝网自热食品相关的商品销售数据,进行了以下数据分析。
1数据读入
首先导入所需包:
# 导入包 import numpy as np import pandas as pd import time import jieba import os from pyecharts.charts import Bar, Line, Pie, Map, Page from pyecharts import options as opts import stylecloud from IPython.display import Image
使用循环读入数据集,查看一下数据集大小,可以看到一共有4403条数据。
file_list = os.listdir('../data/')
df_all = pd.DataFrame()
# 循环读入
for file in file_list:
df_one = pd.read_excel(f'../data/{file}')
df_all = df_all.append(df_one, ignore_index=True)
print(df_all.shape)
(13984, 6)
预览一下数据。
df_all.head()
2数据预处理
我们对数据集进行以下处理,以便我们后续的可视化分析工作,经过处理之后的数据共8418条。
# 去除重复值
df_all.drop_duplicates(inplace=True)
# 删除购买人数为空的记录
df_all = df_all[df_all['purchase_num'].str.contains('人付款')]
# 重置索引
df_all = df_all.reset_index(drop=True)
df_all.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 8418 entries, 0 to 8417 Data columns (total 6 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 category 8418 non-null object 1 goods_name 8418 non-null object 2 shop_name 8418 non-null object 3 price 8418 non-null float64 4 purchase_num 8418 non-null object 5 location 8418 non-null object dtypes: float64(1), object(5) memory usage: 394.7+ KB
# 提取数值
df_all['num'] = df_all['purchase_num'].str.extract('(\d+)').astype('int')
# 提取单位
df_all['unit'] = df_all.purchase_num.str.extract(r'(万)')
df_all['unit'] = df_all.unit.replace('万', 10000).replace(np.nan, 1)
# 重新计算销量
df_all['true_purchase'] = df_all['num'] * df_all['unit']
# 删除列
df_all = df_all.drop(['purchase_num', 'num', 'unit'], axis=1)
# 计算销售额
df_all['sales_volume'] = df_all['price'] * df_all['true_purchase']
# location
df_all['province'] = df_all['location'].str.split(' ').str[0]
df_all.head()
此部分部分主要对以下的维度数据进行汇总和可视化分析,以下展示关键部分:
cat_num = df_all.groupby('category')['true_purchase'].sum()
cat_num = cat_num.sort_values(ascending=False)
# 条形图
bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px'))
bar1.add_xaxis(cat_num.index.tolist())
bar1.add_yaxis('', cat_num.values.tolist())
bar1.set_global_opts(title_opts=opts.TitleOpts(title='自热食品细分品类月销量表现'),
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=0)),
visualmap_opts=opts.VisualMapOpts(max_=1960179.0)
)
bar1.render()
shop_top10 = df_all.groupby('shop_name')['true_purchase'].sum().sort_values(ascending=False).head(10)
shop_top10.sort_values(inplace=True)
# 条形图
bar2 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px'))
bar2.add_xaxis(shop_top10.index.tolist())
bar2.add_yaxis('', shop_top10.values.tolist())
bar2.set_global_opts(title_opts=opts.TitleOpts(title='自热食品各店铺月销量排行Top10'),
)
bar2.set_series_opts(label_opts=opts.LabelOpts(position='right'))
bar2.set_colors(['#50A3BA'])
bar2.reversal_axis()
bar2.render()
province_top10 = df_all.province.value_counts()[:10] # 条形图 bar3 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar3.add_xaxis(province_top10.index.tolist()) bar3.add_yaxis('', province_top10.values.tolist()) bar3.set_global_opts(title_opts=opts.TitleOpts(title='各省份自热食品店铺数量排行Top10'), visualmap_opts=opts.VisualMapOpts(max_=1140) ) bar3.render()
province_num = df_all.groupby('province')['true_purchase'].sum().sort_values(ascending=False)
# 地图
map1 = Map(init_opts=opts.InitOpts(width='1350px', height='750px'))
map1.add("", [list(z) for z in zip(province_num.index.tolist(), province_num.values.tolist())],
maptype='china'
)
map1.set_global_opts(title_opts=opts.TitleOpts(title='全国自热食品店铺月销量分布'),
visualmap_opts=opts.VisualMapOpts(max_=500000),
)
map1.render()
# 分箱
bins = [0,30,50,100,150,200,500,1000,9999]
labels = ['0-30元', '30~50元', '50-100元', '100-150元', '150-200元', '200-500元', '500-1000元', '1000-8800']
df_all['price_cut'] = pd.cut(df_all.price, bins=bins, labels=labels, include_lowest=True)
price_num = df_all['price_cut'].value_counts()
# 数据对
data_pair2 = [list(z) for z in zip(price_num.index.tolist(), price_num.values.tolist())]
# 绘制饼图
pie2 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px'))
pie2.add('', data_pair2, radius=['35%', '60%'])
pie2.set_global_opts(title_opts=opts.TitleOpts(title='自热食品都卖多少钱?'),
legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%'))
pie2.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:\n{d}%"))
pie2.set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF'])
pie2.render()
结语:
最后在说道自热食品,虽然说宅家时,打开包装稍等一会儿就能吃上热腾腾的小火锅或米饭,真的是太方便了。但是同时,关于自热食品安全隐患的消息也频出,在食物的种类和口感上更是比不上自己做的或外面吃的新鲜食材了。对自热食品你是怎么看的呢?欢迎留言告诉我们哦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26