京公网安备 11010802034615号
经营许可证编号:京B2-20210330
协同过滤推荐算法是诞生时间最早,而且应用广泛的,著名的推荐算法。其最主要的功能进行是预测和推荐。协同过滤推荐算法可以通过对用户历史行为数据的挖掘,从而发现用户的偏好,并且基于不同的偏好,将用户划分为不同的群组,并推荐品味相似的商品。基于用户的协同过滤算法user-based collaboratIve filtering,是协同过滤推荐算法的极为重要的一个分类,今天小编主要给大家分享基于用户的协同过滤算法的原理和实现。
一、基于用户的协同过滤算法概念
基于用户(user-based)的协同过滤算法是通过,挖掘用户的历史行为数据,发现用户对商品或内容的偏好,并对这些偏好进行度量和打分。之后根据不同用户对相同商品或内容的态度以及偏好程度,来计算用户之间的相似度关系。基于用户的协同过滤,主要计算的是用户与用户之间的相似度,只需要找出相似用户喜欢的物品,并预测出目标用户对对应物品的评分,就能够找到评分最高的物品推荐给用户,这样能够挖掘用户的隐藏属性。
二、基于用户的协同过滤算法原理
基于用户的协同过滤算法主要包括以下两个步骤:
(1) 找到与目标用户兴趣相似的用户集合。
(2) 找到此集合中的用户感兴趣的,并且目标用户没有接触过的的物品推荐给目标用户。
基于用户User-CF算法的假设是目标用户和其他用户的兴趣、偏好相似,那么他们喜欢的东西都应该也相似,就是常说的人以群分。
基于用户的协同过滤算法适用于用户较少、用户个性化兴趣不太显著的情况,这样,在推荐过程中用户新的行为不一定会导致推荐结果的变化,但是如果用户过多,那么计算用户相似矩阵的代价就会太大。并且这一算法不能解决新用户进来的冷启动问题,新物品进来却可以较快地进行推荐。
三、算法实现
1.计算用户相似度
user-item:
movieId 1 2 3 4 5 6 7 8
userId
1 3.5 2.0 NaN 4.5 5.0 1.5 2.5 2.0
2 2.0 3.5 4.0 NaN 2.0 3.5 NaN 3.0
3 5.0 1.0 1.0 3.0 5.0 1.0 NaN NaN
4 3.0 4.0 4.5 NaN 3.0 4.5 4.0 2.0
5 NaN 4.0 1.0 4.0 NaN NaN 4.0 1.0
6 NaN 4.5 4.0 5.0 5.0 4.5 4.0 4.0
7 5.0 2.0 NaN 3.0 5.0 4.0 5.0 NaN
8 3.0 NaN NaN 5.0 4.0 2.5 3.0 4.0
# 构建共同的评分向量
def build_xy(user_id1, user_id2):
bool_array = df.loc[user_id1].notnull() & df.loc[user_id2].notnull()
return df.loc[user_id1, bool_array], df.loc[user_id2, bool_array]
#如此用户评分矩阵中用户1,和用户2的共同评分向量是
movieId
1 3.5
2 2.0
5 5.0
6 1.5
8 2.0
Name: 1, dtype: float64,
movieId
1 2.0
2 3.5
5 2.0
6 3.5
8 3.0
Name: 2, dtype: float64)
# 皮尔逊相关系数
def pearson(user_id1, user_id2):
x, y = build_xy(user_id1, user_id2)
mean1, mean2 = x.mean(), y.mean()
# 分母
denominator = (sum((x-mean1)**2)*sum((y-mean2)**2))**0.5
try:
value = sum((x - mean1) * (y - mean2)) / denominator
except ZeroDivisionError:
value = 0
return value
2.找到相似度最高的用户并进行推荐:
# 计算最相似的邻居
def computeNearestNeighbor(user_id, k=3):
return df.drop(user_id).index.to_series().apply(pearson, args=(user_id,)).nlargest(k)
#与用户3相似的前3个用户
userId
1 0.819782
6 0.801784
7 0.766965
Name: userId, dtype: float64
#推荐
def recommend(user_id):
# 找到最相似的用户id
nearest_user_id = computeNearestNeighbor(user_id).index[0]
print('最相似用户ID:')
print nearest_user_id
# 找出邻居评价过、但自己未曾评价的项目
# 结果:index是项目名称,values是评分
return df.loc[nearest_user_id, df.loc[user_id].isnull() & df.loc[nearest_user_id].notnull()].sort_values()
#对用户3进行推荐结果
最相似用户ID:
1
movieId
8 2.0
7 2.5
Name: 1, dtype: float64
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22