京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网站数据分析实战—用户偏好分析_数据分析师
熟悉网站分析的朋友们都知道,GA(Google Analytics)中可以关联不同的维度(Dimension),比如“城市”和“产品”,通过关联(Sub-relation),我们可以得到不同城市下,各产品的相关数据。在Omniture的几个网站分析工具中,也同样能够对某个eVar根据按另一个eVar来breakdown。
好了,废话不多说,接下来就让我们一起去发现一些有趣的事情!
Step 1. 获取数据
1.a 请生成一张报表,
维度(Dimension):城市(Cities)
指标(Metric):购买数量/销量(Units)
时间段可根据需要设定,时间粒度(Granularity)在Omniture中选None/aggregate,表示把时间以聚合的方式展现,而不是按daily、monthly等方式来划分,GA中同理。
好了,我们得到了一张关于各个城市的访客所产生的订单数的报告,第三列Ratio是经过计算得到的各城市订单数占总体的比例。这里假定了只有图表中所列出的10个城市,所有数据均为模拟数据。
1.b 类似上一张城市报告,我们再获得一份产品类(Product Category)的报告,维度:Category, 指标:Units,获得的报告如下
* 这里需要注意,你所看到的两张表中的Units总量是一样的,但如果你选择了Orders作为Metric的话,那么品类报告中的Orders应该会大一些,因为有些用户的单个订单横跨了不同的产品类。比如实际情况是你下了一个订单,包含了一台VAIO和一台DSC,那么在产品类报告中这1个订单会被分拆为2个,各自归属到2个品类中。如果Orders总量相差不大,那不用太在意这个差异,如果你觉得差异让你无法接受的话,那也不难,对城市报告中的数据做个简单处理:处理后各城市订单数 = 处理前各城市订单数 * (产品类报告订单总数 / 处理前城市订单总数)。但是这样的处理会稍许影响到后续介绍的计算过程,当然,只要你保持头脑清醒,相信在理解了算法后根据需要来修改也不是难事。
1.c 获得一份Sub-relation的报告,第一个维度选择城市,第二个维度选产品类,指标仍然是Units,报表如下:
City Breakdown by Category
限于篇幅,图中只显示了Shanghai的数据,实际应该是所有其它城市都会得到跟Shanghai类似结构的数据。由于本例中共有10个城市和10个产品类,因此得到的数据应该是10*10=100行。同样,这里的Units总量应该与之前的相同。
从表中我们可以知道,在Shanghai所产生的962个Units中,VAIO占了378个,DSC占了112个,这个很容易理解。
Step 2. 数据处理
Difference
如上图所示,我们在1.c报表的基础上,新增一列Predicted Units,作为我们预测的商品销量,怎么计算呢?Predicted Units = 1.a中Shanghai的 Units * 1.b中VAIO的Ratio(或者1.a中Shanghai 的 Ratio * 1.b中VAIO的Units也是一样的)
然后我们再新增一列Difference,表示实际值与预测值的差异程度,计算方式为:
Difference = (Units – Predicted Units) / Predicted Units
Step 3. 数据解读
不难理解,如果实际值大于预测值,Difference为正,反之为负,实际值与预测值差异越大,Difference的绝对值越大。
既然需要的数据都有了,该怎么看我们用户的偏好呢?如何去发现那些有价值的信息呢?
Difference 一列中,最抓人眼球(eye-catching)的显然是Shanghai-DSC那行了,372%。这表示,Shanghai的用户比我们想象中的更热衷于DSC产品,而且是远远大于预期。同样,VAIO、Tablet等产品在Shanghai用户中的销售情况也比我们的预期要好。而HIFI的-80%,MDR的-59%,说明了Shanghai的用户对这些产品并不是非常感兴趣。当然,如果在做这个分析前,你已经对你的某些产品做了定向投放,那么会一定程度上影响该报告的解读,这时候,我的建议是:
1. case by case的来分析那些定向投放了的产品,需要综合考虑你的投放情况及业务情况
2. 剔除那部分定向投放了的产品及密切相关的产品,从而解读那些未受太大影响的产品数据。
到这里,如果在读这篇文章的你正从事Online Marketing等相关的工作,不知道有没有能够触动到你的神经呢?SEM、adwords等广告投放平台中的地理位置定位,能通过这个分析得到改进吗?花钱买的广告,真的投放给那些感兴趣的用户了吗?……
本文所谓的预测,并没有基于什么很高级的算法,只是先假定了我们的所有用户的偏好是一致的,基于这个假设,两个维度关联后的情况应当与两个维度独立时所推断的情况一致。还是举个简单的例子来说明吧。假定双胞胎姐妹总共吃了4个水果,又知道水果中香蕉被吃了2个,苹果也被吃了2个。如果姐妹俩的偏好一致,我们可以认为姐妹应该各自吃了1个香蕉1个苹果。然而真实的情况是姐姐吃了2两个香蕉,妹妹吃了2两个苹果,也就是说,姐姐比我们所认为的多吃了1个香蕉而少吃了1个苹果,那么她的偏好应该是爱吃香蕉而不爱吃苹果。
当然,这样的预测方法由于少考虑了很多因素而并变得不是很精准,但笔者认为,这不会是什么很大的问题。虽然我们的计算过程是定量的,但我们的目的只是定性而已,380%的Difference在这个方法中跟370%没有什么太大的区别。而且,以损失一些精度为代价,获得更高的效率并非什么不可原谅的事,毕竟我们是在商场里作战,而不是在学校码论文。
最后想说的是,本文所举例子是不同城市用户关于不同产品类的购买偏好分析,实际上,朋友们完全可以根据自己的业务需求来驱动类似的分析,比如关联用户的操作系统(Operating System)和浏览器(Browser),指标选择访问数(Visits),便能了解到你网站的用户在不同操作平台上更喜欢用哪种浏览器。
理论上来说,任意两个维度都可以关联起来,且能说明些问题,但不建议强行地去关联两个维度,然后绞尽脑汁地去赋予它某种意义,不要为了分析而分析。还是那句话,以业务需求来确定分析目标,再以分析结果来驱动业务发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22