
半监督学习(SSL),全称Semi-Supervised Learning,类属于机器学习(Machine Learning,ML)。在只有少量标记样本,大部分样本都是无标记的情况下,可以使用半监督学习方法,根据无标记样本与标记样本间的相似度、以及无标记样本潜在的分布,这两个核心思想,对无标记的样本进行标记。下面介绍一下半监督学习的种类:
1 生成式方法
生成式方法(generative methods)是直接基于生成式模型的方法,这一方法是假设所有数据(无论是有标记还是没有标记)都是由同一潜在的模型生成的。这个假设利用潜在模型的参数,将未标记数据与学习目标联系起来,而未标记数据的标记能够当作模型的缺失参数,然后基于EM算法,进行极大似然估计求解。生成式方法的重点在于生成式模型的假设,不同的模型假设会产生不同的方法。当然这一方法的关键也就是这个模型假设必须是准确的,也就是假设的生成式模型必须是与真实数据分布相吻合的;不然利用未标记数据反而会降低泛化性能。生成式方法方法实现简单,但是在实际应用中,事先很难做出准确的模型假设。
半监督支持向量机,Semi-Supervised Vector Machin,是支持向量机在半监督学习上的推广。在不考虑未标记样本的情况下,支持向量机试图找到最大间隔划分超平面;在考虑未标记样本的情况下,半监督支持向量机试图找到,能将两类有标记样本区分开,并且穿过数据低密度区域的划分超平面。低密度分隔(low-densityseparation)假设是聚类假设在考虑了线性超平面划分后的推广。TSVM是采用局部搜索的策略来进行迭代求解,也就是首先使用有标记样本集训练出一个初始SVM,接着通过该学习器对未标记样本进行打标,这样使得所有样本都有了标记,并基于这些有标记的样本重新训练SVM,之后再寻找易出错样本不断调整。
3协同训练(基于分歧的方法)
协同训练基于大量模型,让每一个模型去寻找最有把握的样本,并作为其他模型的训练样本,这一互相学习、共同进步的过程不断迭代,直到两个分裂期不再变化。不同的视图、不同的算法、不同的数据、不同的参数都是产生差异的渠道。协同训练能够通过将样本集拆分成不同的子样本集,并分别在子样本集上训练模型,就会产生多个模型;也可以对样本集建立不同的分类模型,通过各个模型决定样本的置信度,与集成学习类似。
4图半监督学习
5半监督聚类
聚类是无监督学习任务,为了利用现实任务中获得的监督信息,提出半监督聚类(semi-supervised clustering)来利用监督信息以获得更好的效果。
聚类任务中获得的监督信息分两种:1)有必连(must-link)和勿连(cannot-link)约束,必连是指样本必属于同一个簇,勿连是指样本必不属于同一个簇;2)含有少量的有标记样本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09