京公网安备 11010802034615号
经营许可证编号:京B2-20210330
层次聚类,即Hierarchical Clustering,是一种聚类算法,通过对不同类别数据点间的相似度的计算,从而创建一棵有层次的嵌套聚类树。
一、层次聚类算法原理
在聚类树中,树的最底层是不同类别的原始数据点,树的顶层则是一个聚类的根节点。层次聚类算法按照层次分解的顺序可分为:自下向上也,就是凝聚的层次聚类算法,以及自上向下即分裂的层次聚类算法(agglomerative和divisive),又可以被称为自下而上法(bottom-up)和自上而下法(top-down)。自下而上法简单理解为:一开始每一个个体(object)都是一个类,然后再根据linkage寻找同类,最后合并,形成一个“类”。自上而下法与自下而上法相反,是开始所有个体都归属于一个“类”,然后通过linkage排除异类,最后每一个个体都成为一个“类”。
在层次聚类算法中, 最关键的在于计算两个聚类间的距离,根据计算两个聚类之间距离的算法的不同,能够分为以下四种聚类算法:
Single Linkage:两个数据集间的最小距离
Complete Linkage:两个数据集间的最大距离
以上两种方法很容易受到极端值的影响,计算大样本集效率较高。
Average Linkage:任意两个数据集的距离之和的平均值。这种方法虽然计算量比较大,但是这种度量方法更合理。
Ward:最小化簇内方差。假设聚类A的中心点为a,聚类B的中心点为b,A、B合并后的聚类为C,其中心点为c,则聚类A、B的距离为:
二、层次聚类的优缺点
优点:
1.距离和规则的相似度比较容易定义,限制很少;
2.不需要预先制定聚类数;
3.能够发现类的层次关系;
4.能够聚类成其它形状
缺点:
1.计算的复杂度很高;
2.即使是奇异值也会产生很大影响;
3.算法很可能会聚类成链状
三、sklearn中的层次聚类
##导入库
from sklearn.cluster import AgglomerativeClustering
##建模,并指定聚类个数
ward = AgglomerativeClustering(n_clusters=3)
##拟合并预测数据
ward_pred = ward.fit_predict(data)
绘制系统树:
from scipy.cluster.hierarchy import linkage,dendrogram
import matplotlib.pyplot as plt
#指定连接类型为离差平方和法
linkage_type = ‘ward’
#拟合数据,并得到关联矩阵
linkage_matrix = linkage(X, linkage_type)
#创建窗口
plt.figure(figsize=(22.18))
#将关联矩阵输送到系统方法
dendrogram(linkage_matrix)
#显示
plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23