京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为何大家对大数据表现出如此激情_数据分析师
为何大家对大数据表现出如此的激情呢?看看外面精彩的世界便知一二。
大数据最近很火爆!马云收购恒生终于在传言不久后,被恒生电子股份有限公司股东股权变动的提示性公告证实。马云不好好经营电商打通线上线下,他花33亿收购恒生干嘛?令许多人疑惑不解。有人甚至发出感慨:“愚人节那天才见53.7亿入股银泰,今又见33亿入股恒生。各种整合融合势不可挡!线上虽易,线下不易,且行且珍惜。”其实当你明白何为大数据,就知道这次马云又在布一个很大的局,他也开始向大数据领域发力了。
在美国,大数据产业发展已步入大规模商业化阶段,已广泛渗透到经济、政治、教育、安全和社会管理等众多领域,美国提出大数据的战略地位堪比工业时代的石油。
在欧盟,相关报告指出,欧盟公共机构产生、收集或承担的地理信息、统计数据、气象数据、公共资金资助研究项目、数字图书馆等数据资源的全面开放,预计每年将会给欧盟带来400亿欧元的经济增长,欧盟认为大数据是促进经济增长的重要力量。
在英国,经济与商业研究中心CEBR 2012年研究报告进一步证实了大数据的经济价值,2017年预计将达到407亿英镑。
在韩国,“智慧首尔2015”计划指出:“首尔开放数据广场”是开放性的数据中心,已有33个数据库、880个数据集,为用户提供十大类的公共数据信息,包括育儿服务、公共交通路线、巴士到站时间、停车位、各地区天气预报及涵盖生活方方面面的信息。韩国认为公共数据已成为具有社会和经济价值的重要国家资产。
由此可见,大数据早已不是云山雾罩的新生事物,马云知道,全世界都知道。可以预料大数据将会成为未来产业财富扩张的重要引擎。
而在中国随着经济增长模式的根本性转变、新技术新产业的兴起、激烈的行业竞争以及自身价值创造的业绩压力,无论是金融业还是产业都需要借助对自身业务数据、行为、过程的分析与优化,推动自身的转型与创新。
产业是经济基础,金融对产业的发展起到催化剂和倍增剂的作用,金融只有与产业融合才能产生放大效用,才能产生巨大价值。但是长期以来由于数据统计、集成、储备和分析模型的不完善,网络技术的不成熟,产业和金融无法进行有效的结合,产业金融也面临着不均衡发展的困境,尤其像艺术品、发明专利、金融票据、林权、农地、旅游、种子、机器人等之类比较难定价的特殊商品更无法形成资产证劵化。
互联网元素的要点就是去核心化、扁平化、便捷、数据思维与公开公正,而大数据是支撑和优化信息资源、自然资源、客观因素的量化性综合指标认定,它强大的系统数据集成和分析能力,势必给人类社会带来前所未有的应用领域和想象空间,成为人类社会等同于自然资源、人力资源一样重要的未来不可或缺的战略资源。
互联网促进了科技的创新,提高了生产力,而大数据及其运用在我国未来产业经济发展中将扮演举足轻重的角色,特别是金融围绕产业升级及换代,植入互联网大数据元素将成为无法估量的产能!概括为产业-互联网-金融三位一体的融合。
然而大数据于产业金融领域的运用究竟如何很好的实现?概括起来为以下两方面:
其一、系统模型:通过检索引擎及爬虫技术采集产业和产品互联网海量数据;通过分词矩阵清洗、排重、过滤等预处理方式,存储一批完备的产业相关的金融大数据;通过检索、统计和智能分析得到初步的行业分析报告,然后运用金融工程及各类风险控制模型构建以产品价格为预测的估值模型,以价值链为基础的决策模型并提供适合产业的基于大数据支持下的产业综合指数及参考指标。
其二、系统实现:
1、产业和产品的价值评估:充分利用计算机技术和网络技术,实现对产业、产品的综合评估及计算机自动化处理,管理上实现现代化、科学化、自动化。
2、产业的风险预警及预测:通过此系统实现产业以及产品的价格的预测及风险的预警;
3、产业的风向标的参考指数及指标:系统整合产业及金融大数据云平台等众多资源,由来自各个方向的数据,结合多种评估模型,分几段实现产业指数体系及评估系统。产业指数包含综合指数、分类指数(产品指数、评估指数等)。该产业指数将成为产业市场的“晴雨表”和引导投资的“风向标”。
以大数据林权为例:通过检索引擎及爬虫技术采集互联网海量数据;通过分词矩阵清洗、排重、过滤等预处理方式,存储了一批完备的林业及林业相关的金融大数据;通过检索、统计和智能分析得到初步的行业分析报告,然后运用金融工程及各类风险控制模型构建以产品价格为预测的估值模型;以林业价值链为基础的决策模型并提供适合林业的基于大数据支持下的行业综合指数及参考指标,打造“林权交易评估参考系统”为核心的产业金融投资生态圈,构建林业金融大数据平台;并融合支付、交易和其他衍生业务,构成领先的产业互联网金融综合解决方案,真正使企业与金融部门通过一定的关系相互连接、贯通,实现产业资本和金融资本的相互转化。
今天,大数据云端存储已经成为一种时髦,数据源的采集,人才,数学模型,加上心理学的分析后对数据的运用成为一种必然。目前很多大数据公司花费大量的资金及人力仅仅是采取了大量的数据,在预处理及运用上还有很长的路要走。
面对行业分割,部门垄断的事实,只有创新的方法才能实现数据的获得,才能使数据库成为人才资源一样的战略物质,而不是束之高阁让宝贵的数据资源随着时间的流逝贬值。让大数据为国家发展规划提供帮助,为实业兴邦企业发展指明方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24