京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与大科学_数据分析师
最近去武汉参加第八届全国测试学术会议,包括硬件测试、软件测试,碰到许多老朋友和新朋友,大家议论了许多。我和大家交流了在CACM上看到的“Big data meets big science”,也颇有感触。
在斯坦福的国家加速器实验室,大气观测望远镜到2020年要安装一个32亿像素(3.2GP)的照相机,10年以后每晚每隔15秒摄取极高分辨率的天空图像。该系统需要存储10亿亿字节(100PB)的数据,相当于2000万个DVD。当然,通过这个照相机获得的原始数据比这还要多得多。这个照相机的视野里面有400亿~500亿天文目标。长久存储这些像素几乎是不可能的,只能实时处理和提取关键数据。大型科学仪器,从大型强子碰撞型加速装置到高级光束处理器和分子成像工具产生大量数据,是目前的并行超级计算机所无法处理的。
可目前看到的现实是:1.摩尔定律已经失效,因为晶体管尺寸已经达到物理极限。2.超级计算机已经不能再这样用CPU堆下去了。成千上万,甚至几十万的CPU、GPU堆起来的超级计算机,耗电惊人,而并行计算实际上很难实现。大部分时间,CPU闲着,而Memory忙得要命。3.冯·诺伊曼计算机体系结构非改不可了。存储—计算的方式已经不适用新情况。对于许多应用来说,实际的瓶颈不是处理时间,而是需要不断地存取存储器。
一个明显的事实是,虽然我国的天河超级计算机几次排名世界第一,但美国最近基本不参与这个排名的竞争,排第几也不关心了。
对于大数据的问题,怎么解决?科学家们主要采取三个途径:一个是从观测开始各环节设法减小数据集;一个是从私人企业学习基于云计算的经验;另一个是探索新技术,譬如量子计算。
量子计算对于破解密码、因子分解、量子物理模拟可能很有效,但是,对组合优化、航空调度、绝热算法是否有效,还很难说。所以,大科学产生大数据,大数据技术要靠大科学。物理学、光学、生物学、计算科学一起来,研究这些数据的收集、分发、存储、处理。不能单靠计算机。我曾撰文说:大数据技术靠计算机,大数据分析要靠各领域的专家,现在看来,大数据技术也要靠大科学的专家。
在这样一个创新的关键时刻,中国人应该有所作为。不要天天想着发SCI、投CNS、提职称、发牢骚,想想这些大问题吧!但是,我跟与会的朋友们说,不管计算机怎么变,容错计算是一个永恒的主题,在量子计算中,人们也在密切关注容错计算。高端容错计算机的实用价值就更不用说了,大家都懂得。
我想补充几句话:微纳电子产业现在还很兴旺,市场仍然很大;超级计算机,特别是其应用还是要搞,从科学研究的角度讲要有些前瞻性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26