京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
作者:泽龙、Mika
数据:真达
后期:泽龙
【导读】
CBA重启开赛,辽宁为什么从冠军队变成鱼腩队?是侄子坑叔,还是亚洲第一控卫变身综艺咖,本期我们用全面的数据证明到底谁害了辽宁队!
Python技术分析请看第六部分。
Show me data,用数据说话
今天我们聊一聊 辽宁队
CBA做为中国职业体育最先重启的联赛,真的是万众瞩目,在第一阶段最后一场比赛广东对江苏的比赛中,钟南山钟老亲临现场,做为中国篮球界的女婿,钟老真的为CBA重启操碎了心。CBA这次复赛重启结果也很不错,堪称模范。
而本期我们要聊的是辽宁队,用数据解读一支争冠队如何变成了鱼腩队?
文章要点:
辽宁队胜负场得分和命中率
不同球员的平均出场时间
辽宁队胜负场失误情况
外援与国内球员平均得分对比
用Python分析辽宁队比赛数据
01志在卫冕的辽宁队
从争冠队到鱼腩队
辽宁队在赛季刚开始还算顺风顺水,但是复赛重启后,辽宁队战绩可谓是糟糕透顶,连败北京、广州、浙江后,郭士强成为背锅的那个人,黯然下课。真是大侄子坑老叔,一个愿打一个愿挨。
之后,辽宁虐两个不强的队后,遇到强队又比赛落败,真的很难联想到这是一支争冠的球队,这次我们结合数据,聊一聊辽宁变成这样到底谁应该背锅?
赛季刚开始的辽宁队算是顶级强队,我们来看下当初那只辽宁队,先看到分情况:
全部比赛-胜场得分曲线图
全部比赛-负场得分曲线图
从折线图来看,辽宁胜场得分都是100分以上,负场也几乎过100了,证明辽宁队进攻完全没有问题,当时还有师弟这样的CBA詹姆斯, 一个人可以解决很多问题,当时的辽宁真的强。
复赛后的辽宁队的得分下降到什么程度?焦灼的比赛得分刚到100.被虐得体无完肤的比赛得分都是在垃圾时间刷分,整体效率下降太多。
02命中率不稳定
郭士强为此下课
再看到整体命中率,我们分别统计了胜负场次,拉了折线图出来:
全部比赛-胜场命中率曲线图
全部比赛-负场命中率曲线图
罚球数据方面,复赛后所有球队都有下滑,这个可以理解,毕竟很久没有打比赛了。
三分球辽宁队数据真的惨不忍睹,尤其是复赛后的输球的几场,命中率只有30%多,这和广东新疆等目标球队差距太大了。复赛后和浙江的比赛二分命中率跌破50%,在以前根本不敢相信,这也是郭士强下课的主要原因。二分命中率低只能说明训练不到位,要不就是场上球员太累了。
大家一直在诟病辽宁队的轮换,所以我们也分析了球员出场时间,制作了饼图。
03奇葩的4+2轮换
只要主力不累死就不能下
这是本赛季所有比赛的球员出场时间图:
不同球员的平均出场时间
把外援去除,郭艾伦、赵继伟、韩德君、李晓旭、刘志轩、贺天举构成了主要轮换,看这还算符合CBA球队常规轮换人次。
复赛后,李晓旭受伤,刘志轩精神游离,贺天举有复苏的迹象,但是远远达不到为球队分忧的状态,因为防守实在太差了。所以只剩下郭艾伦、韩德君、赵继伟了,再加上1个外援,组成了奇葩的4人主力+2人轮换阵容。
然后就有了孙铭徽完爆亚洲第一后卫,那场比赛孙铭徽出场40.3分钟,郭艾伦出场46.8分钟,真是只要不累死就要上。
通过上面的数据来看,轮换是辽宁队复赛后最大的问题,郭士强为此下课也合情合理。但是外教用人比郭士强还狠我们就看不明白了,辽宁队是真的破罐子破摔了么?郭艾伦场均打满全场是什么操作?就算是郭艾伦的球队也不能场场打满吧。
04没有超强得分能力的保证
失误多不可能赢球
在分析辽宁蜕变的同时,也发现了一些之前球队的隐患,分享给诸位。
这是辽宁队胜负场次分别的失误次数:
全部比赛-胜场失误曲线图
全部比赛-负场失误曲线图
看看这个曲线,要是换我们的杜锋杜指导带队,估计每场都能出好多小视频,疯狂输出,打不了几场全队就剩不下什么人了。在没看到数据之前,觉得见谁削谁的辽宁队场均失误应该会很少,这张图颠覆了我的认知,假如不看队名,我以为是福建这种只进攻不防守的球队应该有的数据表现。
05少了一个外援
谁来分担得分压力?
再看到外援和国内球员的平均得分:
外援-国内球员平均得分对比
这个比例在CBA倒是很常见,外援占有球队的一半出手权,剩下一半才是国内球员的,也证明了师弟在辽宁队真的很重要。郭艾伦单核带队真的很难,这倒不是说韩德君不是核心,在CBA的FIBA规则下,内线带队真的太过艰难了。
这也侧面就说明了复赛之后辽宁体现的问题,失去了2名外援,就算新外援梅奥和师弟表现的平起平坐,但是国内球员的得分并没有增加,以前得分的还是得分,以前不出场的还是不出场。这算下来就少了将近20分,和CBA复赛后国内球员积极的表现形成了鲜明的对比。
06用Python带你分析
辽宁队比赛数据
我们使用Python获取并分析了搜狐体育CBA数据中心辽宁队的比赛和技术统计数据,以下为关键部分代码:
首先导入分析所需包,并读入数据集。
汇总数据中包含了从2019-11-01至2020-07-02日的交战汇总数据,共37场,数据格式如下:
技术数据中包含了每一场比赛选手的详细技术数据,数据预览如下:
此处对首发数据进行清洗。
此处我们分析:
代码部分内容较多,以下展示部分分析代码:
结语
辽宁队本赛季能走多远,能不能过季后赛首轮 完全取决于李晓旭回归后的表现,需要弥补没有大外援所损失的得分和篮板,也让韩德君可以稍微休息一下。
但治根本的良药还是要培养新人,辽宁青训出了这么多优秀人才,人才断层应该不会发生,希望俱乐部多多启用新人,辽宁队也到了破而后立的时刻了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23