最近这部《隐秘的角落》彻底火了,目前在豆瓣高达8.9分,有45万余人进行了评论。
一时间剧中张东升那句「爬山」、「你说我还有机会吗」 承包了6月份的梗。各种表情包和段子齐飞。
作为主演秦昊当年的同学,章子怡都出来打call。
刷完剧,那首「小白船」简直成了新的恐怖童谣,让人在脑海中无限循环,太上头了。
那么这部制作精良的国产剧为何能收获到观众的一致好评?大家在看剧时都在讨论些什么?今天我们就用数据来带你看看。
01拿拍电影的态度拍网剧 ,不好看才怪
该剧改编自紫金陈推理小说《坏小孩》 ,讲述了沿海小城的三个孩子在景区游玩时无意拍摄记录了一次谋杀,他们的冒险也由此展开。扑朔迷离的案情,将几个家庭裹挟其中,带向不可预知的未来......
剧刚开始的画面就是,文质彬彬的男青年带着一对老人在山顶拍照,二老坐在石头上,背后就是万丈深渊,男青年上前亲自指导姿势,而就在一瞬间,他眼神一冷,两只手同时发力,将二老从山顶推了下去,甚至在推完还在佯作惊慌失措的样子大喊:“爸!妈!”而这一切却被三个游玩的小孩无意拍了下来。
这一开场就把观众吓了一跳,甚至都起了鸡皮疙瘩。同时也让人欲罢不能想看看接下来会发生什么故事。
剧情不拖沓,演技全员在线
不同于国产剧一般动辄四五十集的篇幅,《隐秘的角落》只有短短的12集,故事紧凑,剧情毫不拖泥带水。
而整部剧中,无论是从挑大梁的秦昊,到三位小演员,还是王景春、张颂文等一众演员都奉献出了无可挑剔的演技。
令人印象深刻的配乐
配乐也是《隐秘的角落》中的亮点之一。配合影视剧的悬疑剧情,这些配乐听起来确实分外惊悚恐怖,也给大家留下了不可磨灭的阴影,被网友调侃:“能不能整点阳间的音乐?”如果问为什么本剧配乐这么讲究,要知道《隐秘的角落》的导演辛爽可是乐队音乐人出身的。
02豆瓣8.9分 年度国剧之光!
首先,我们看到豆瓣的数据。这部剧一开播在豆瓣评分就冲上9.0分,一度冲到9.2分,随着剧集完结,目前稳定在8.9分,已经有45万余人进行了评分。
总体评分
细看评分的分布可以发现,有54.4%的人都给出了五星好评,其次23.4%的人给出四星。这个成绩还是很不错的。
评论热度走势图
从评论走势图可以看到,《隐秘的角落》在6月16日首播,评论热度最高。之后不同于其他剧,随着播出时间评论数量趋于平缓,这部剧再播出后也不时带来热度,引发观众的评论潮。
评论中提及主演
大家在评论时都提到哪些角色了呢?
分析发现,主演张东升的讨论度果然是最高的,其次是三个小演员之一的朱朝阳。演技派演员王景春和张颂文饰演的陈警官和朝阳爸爸讨论度也很高。
主演评价分布
我们分析了豆瓣短评中用户关于主演的好评/一般/差评分布占比。
细致到个人表演来看,小演员们的表现相当突出,比如朱朝阳的扮演者荣梓杉,有超过9成的观众肯定了他的表现。秦昊、王景春两位的表现自然也是很厉害的。他们在剧中的表现,分别获得了88.08%和89.29%的好评率。
0320万条弹幕告诉你
追剧时大家都在说些什么?
接下来我们分析一下《隐秘的角落》在爱奇艺的弹幕数据,我们分析整理了全部12集的弹幕,共200672条。下面看到分析结论:
用户使用的弹幕角色
观众在爱奇艺追剧发弹幕时,可以选择自己喜欢的角色头像。那么观众都最喜欢用哪些用人物角色发弹幕呢?
可以看到,这方面张东升在这方面是榜首。其次是朱朝阳,然后可爱的小妹妹普普位居第三。
弹幕字数分布
在弹幕的字数上我们可以看到,5-10个字的是最多的,共有11万余条弹幕。其次是10-15个字,48032条弹幕。0-5个字的弹幕也有不少,共25420条。可见在追剧发弹幕时,大家还是倾向多说点,表达自己的想法。
整体弹幕词云
在整体弹幕词云中,「孩子」、「严良」、「普普」被提到的频率很高。看到三位小主演的一举一动还是牵动着观众的心的。
接下来,我们分别看到几位主演的人物弹幕词云吧。
张东升
首先就是张东升了,不同于一般脸谱化的反派角色。在张东升的身上,大家既看到他的冷酷,凶残,也看到他的无奈和隐忍。在弹幕中,关于他,提到「爬山」、「机会」的特别多,这几句张东升的话实在太出圈了。
有意思的是,张东升的「头发」也被频频提及,毕竟这个秃头造型实在是太令人印象深刻了。
朱朝阳
下面再看到三位小主演中最受关注的朱朝阳。品学兼优的他,因为父母离异性格有些内向和孤僻。在词云中,他与「爸爸」、「妈妈」的感情也是大家讨论最多的。其次他与「张东升」间的对手戏,以及后面他角色的「黑化」也是讨论焦点。
普普
剧中的小妹妹普普也是很多人喜欢的角色了,在词云中可以看到观众对她的「喜欢」,以及对她「演技」的肯定。此外,「善良」等词也常被提到。
严良
剧中的另一位小演员角色——严良也是弹幕中关注度很高的。关于他,大家经常会提到跟他形影不离的「普普」,此外「演技不错」「厉害」等词也频出。
04教你用Python分析爱奇艺弹幕数据
我们使用Python获取并分析爱奇艺的弹幕数据,整个数据分析的流程分为以下三个部分:
下面看到具体步骤:
首先导入所需包,其中pandas用于数据读入和数据处理,os用于文件操作,jieba用于中文分词,pyecharts和stylecolud用于数据可视化。
# 导入库 import pandas as pd import os import jieba from pyecharts.charts import Bar, Pie, Line, WordCloud, Page from pyecharts import options as opts from pyecharts.globals import SymbolType, WarningType WarningType.ShowWarning = False import stylecloud from IPython.display import Image
我们将爬取的数据存放在data文件夹下,使用os操作获取需要读取的csv文件列表。
# 文件列表 data_list = os.listdir('../data/') data_list
['df_第一集.csv', 'df_第七集.csv', 'df_第三集.csv', 'df_第九集.csv', 'df_第二集.csv', 'df_第五集.csv', 'df_第八集.csv', 'df_第六集.csv', 'df_第十一集.csv', 'df_第十二集.csv', 'df_第十集.csv', 'df_第四集.csv']
然后使用pandas将csv文件读入并循环追加到总表df_all中,打印以下数据集大小看一下,一共有200672条。
# 存储数据 df_all = pd.DataFrame() # 循环写入 for i in data_list: df_one = pd.read_csv(f'../data/{i}', engine='python', encoding='utf-8', index_col=0) df_all = df_all.append(df_one, ignore_index=False) # 打印数据集大小 print(df_all.shape)
(200672, 6)
再预览一下前五行数据。
# 预览数据 df_all.head()
数据读入之后,接下来简单对数据集进行预处理的工作,我们针对name字段进行以下处理:使用strip操作去除字符串前后的空格;定义一个转换函数,根据name字段新增name_level字段,标注用户等级,效果如下:
# 字符串处理 df_all['name'] = df_all.name.str.strip() def transform_name(x): if x=='张东升' or x=='朱朝阳' or x=='普普' or x=='严良' or x=='陈冠声' or x=='周春红' or x=='朱永平' or x=='叶军': return 'VIP用户' elif x=='未知用户': return '未知用户' else: return '普通用户' # 新增列 df_all['name_level'] = df_all.name.apply(transform_name) df_all.head()
接下来使用pyecharts进行数据可视化。主要分析内容包含:
首先统计不同等级用户的数量。
level_num = df_all.name_level.value_counts() level_num
未知用户 157722 VIP用户 41127 普通用户 1823 Name: name_level, dtype: int64
使用pyecharts中的Pie类绘制饼图,效果如下:
data_pair = [list(z) for z in zip(level_num.index.tolist(), level_num.values.tolist())] # 绘制饼图 pie1 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px')) pie1.add('', data_pair, radius=['35%', '60%']) pie1.set_global_opts(title_opts=opts.TitleOpts(title='弹幕发送人群等级分布'), legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%')) pie1.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%")) pie1.set_colors(['#3B7BA9', '#6FB27C', '#FFAF34']) pie1.render()
name字段中标注了用户发送弹幕时候使用的弹幕角色,统计并筛选不同弹幕角色的使用频次。
role_num = df_all.name.value_counts()[1:9] role_num
张东升 18734 朱朝阳 8742 普普 4688 严良 2595 陈冠声 2122 周春红 1879 朱永平 1333 叶军 1034 Name: name, dtype: int64
然后使用pyecharts中的Bar类绘制一张饼图。
# 柱形图 bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar1.add_xaxis(role_num.index.tolist()) bar1.add_yaxis("", role_num.values.tolist(), category_gap='5%') bar1.set_global_opts(title_opts=opts.TitleOpts(title="VIP用户最喜欢使用的弹幕角色"), visualmap_opts=opts.VisualMapOpts(max_=18734), ) bar1.render()
content字段记录了用户评论的弹幕信息,此处根据这个字段计算字数并按照步长5进行分箱处理,得到不同字数段下的频次分布。
word_num = df_all.content.apply(lambda x:len(x)) # 分箱 bins = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50] word_num_cut = pd.cut(word_num, bins, include_lowest=False).value_counts() word_num_cut = word_num_cut.sort_index() word_num_cut
(0, 5] 25420 (5, 10] 113834 (10, 15] 48032 (15, 20] 9864 (20, 25] 2385 (25, 30] 645 (30, 35] 274 (35, 40] 109 (40, 45] 49 (45, 50] 46 Name: content, dtype: int64
同样使用Bar类绘制一张条形图。
# 柱形图 bar2 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar2.add_xaxis(word_num_cut.index.astype('str').tolist()) bar2.add_yaxis("", word_num_cut.values.tolist(), category_gap='4%') bar2.set_global_opts(title_opts=opts.TitleOpts(title="弹幕发送字数分布"), visualmap_opts=opts.VisualMapOpts(max_=113834), ) bar2.render()
接下来我们定义一个分词函数get_cut_words,这个函数的功能是传入一列数据,得到使用jieba分词之后的列表。
# 定义分词函数 def get_cut_words(content_series): # 读入停用词表 stop_words = [] with open(r"C:\Users\wzd\Desktop\CDA\CDA_Python\Python文本分析\10.文本摘要\stop_words.txt", 'r', encoding='utf-8') as f: lines = f.readlines() for line in lines: stop_words.append(line.strip()) # 添加关键词 my_words = ['秦昊', '张东升', '王景春', '陈冠声', '荣梓杉', '朱朝阳', '史彭元', '严良', '王圣迪', '普普', '岳普', '张颂文', '朱永平', '十二集', '十二万', '十二时辰'] for i in my_words: jieba.add_word(i) # 自定义停用词 my_stop_words = ['真的', '这部', '这是', '一种', '那种', '哈哈哈'] stop_words.extend(my_stop_words) # 分词 word_num = jieba.lcut(content_series.str.cat(sep='。'), cut_all=False) # 条件筛选 word_num_selected = [i for i in word_num if i not in stop_words and len(i)>=2] return word_num_selected
将角色张东升的弹幕数据传入函数,得到分词之后的列表。
text1 = get_cut_words(content_series=df_all[df_all.name=='张东升']['content']) text1[:5]
Building prefix dict from the default dictionary ... Dumping model to file cache C:\Users\wzd\AppData\Local\Temp\jieba.cache Loading model cost 1.280 seconds. Prefix dict has been built successfully. ['爬山', '老弟', '十二集', '知足', '伊能静']
然后使用stylecloud工具包绘制一张心形的词云图,效果如下:
# 绘制词云图 stylecloud.gen_stylecloud(text=' '.join(text1), max_words=1000, collocations=False, font_path=r'C:\Windows\Fonts\msyh.ttc', icon_name='fas fa-heart', size=653, output_name='./词云图/弹幕角色-张东升词云图.png') Image(filename='./词云图/弹幕角色-张东升词云图.png')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03