
在翻译sklearn文档 2.无监督学习 部分过程中,发现协方差矩阵几乎贯穿整个章节,但sklearn指导手册把协方差部分放在了这一章节偏后的部分,作为机器学习一个基础概念,在这篇文章中,想把协方差矩阵的相关知识以及主要应用。
统计学中常用平均值,方差,标准差等描述数据。平均值描述了样本集合的中间点;方差总是一个非负数,当随机变量的可能值集中在数学期望的附近时,方差较小; 反之, 则方差较大。所以, 由方差的大小可以推断随机变量分布的分散程度, 方差能反映随机变量的一切可能值在数学期望周围的分散程度。标准差描述了各个样本点到均值的距离的平均值。但这些统计量都是针对一维数据的计算,在处理高维数据时,便可以采用协方差来查看数据集中的一些规律。协方差来度量两个随机变量关系的统计量,它描述的意义是:如果结果为正值,则说明两者是正相关的,否则是负相关的。需要注意的是,协方差是计算不同特征之间的统计量,不是不同样本之间的统计量。
协方差公式:
设n个随机向量:
从公式上看,协方差是两个变量与自身期望做差再相乘, 然后对乘积取期望。也就是说,当其中一个变量的取值大于自身期望,另一个变量的取值也大于自身期望时,即两个变量的变化趋势相同, 此时,两个变量之间的协方差取正值。反之,即其中一个变量大于自身期望时,另外一个变量小于自身期望,那么这两个变量之间的协方差取负值。下面根据举一个例子来对协方差形象的解释:
协方差矩阵是实对称矩阵,实对称矩阵的性质:
协方差矩阵中的对角线元素表示方差, 非对角线元素表示随机向量 X 的不同分量之 问的协方差. 协方差一定程度上体现了相关性, 因而可作为刻画不同分 量之间相关性的一个评判量。若不同分量之问的相关性越小,则 非对角线元素的值就越小。特别地, 若不同分量彼此不相关, 那么 C 就变成了一个对角阵。注意, 我们并不能得到协方差矩阵 $C(X)$ 的真实值, 只能根据所提供的 X 的样本数据对其进行近似估计。因此, 这样计算得到的协方差矩阵是依赖于样本数据的, 通常提供的样本数目越多 , 样本在总体中的覆盖面就越广。
理解协方差矩阵的关键就在于牢记它计算的是不同维度之间的协方差,而不是不同样本之间,拿到一个样本矩阵,我们最先要明确的就是一行是一个样本还是一个维度,心中明确这个整个计算过程就会顺流而下,这么一来就不会迷茫了。其实还有一个更简单的容易记还不容易出错的方法:协方差矩阵一定是一个对称的方阵,
有时候由于种种原因,并不使用全部的样本数据计算协方差矩阵,而是利用部分样本数据计算,这时候就要考虑利用部分样本计算得到的协方差矩阵是否和真实的协方差矩阵相同或者近似。
当提供的样本数目相对于特征数足够多时,利用最大似然估计(或者称为经验协方差)计算的结果,可以认为是协方差矩阵的几个近似结果。这种情况下,会假设数据的分布符合一个多元正太分布,数据的概率密度函数中是包含协方差矩阵的,利用最大似然函数,对其进行估计。
在矩阵的求逆过程中, 最大似然估计不是协方差矩阵的特征值的一个很好的估计, 所以从反演得到的精度矩阵是不准确的。 有时,甚至出现因矩阵元素地特性,经验协方差矩阵不能求逆。 为了避免这样的反演问题,引入了经验协方差矩阵的一种变换方式,收缩协方差。
PCA的本质其实就是对角化协方差矩阵。PCA的目的就是“降噪”和“去冗余”。“降噪”的目的就是使保留下来的维度间的相关性尽可能小,而“去冗余”的目的就是使保留下来的维度含有的“能量”即方差尽可能大。那首先的首先,我们得需要知道各维度间的相关性以及个维度上的方差啊!那有什么数据结构能同时表现不同维度间的相关性以及各个维度上的方差呢?自然是非协方差矩阵莫属。协方差矩阵度量的是维度与维度之间的关系,而非样本与样本之间。协方差矩阵的主对角线上的元素是各个维度上的方差(即能量),其他元素是两两维度间的协方差(即相关性)。我们需要的东西,协方差矩阵都有了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08