
异常值检测一般要求新发现的数据是否与现有观测数据具有相同的分布或者不同的分布,相同的分布可以称之为内点(inlier),具有不同分布的点可以称之为离群值。离群点和新奇点检测是不同的,有一个重要的区分必须掌握:
离群点检测:训练数据包含离群点,这些离群点被定义为远离其它内点的观察值。因此,离群点检测估计器会尝试拟合出训练数据中内围点聚集的区域, 而忽略异常值观察。
新奇点检测:训练数据没有受到离群点污染,我们感兴趣的是检测一个新的观测值是否为离群点。在这种情况下,离群点被认为是新奇点。
离群点检测和新奇点检测都用于异常检测, 其中一项感兴趣的是检测异常或异常观察。离群点检测又被称之为无监督异常检测,新奇点检测又被称之为半监督异常检测。 在离群点检测的背景下, 离群点/异常点不能够形成密集的簇,因为可用的估计器假设离群点/异常点位于低密度区域。相反的,在新奇点检测的背景下, 新奇点/异常点只要位于训练数据的低密度区域,是可以形成稠密聚类簇的,在此背景下被认为是正常的。
scikit-learn有一套机器学习工具estimator.fit(X_train),可用于新奇点或离群值检测。然后可以使用estimator.predict(X_test)方法将新观察值分类为离群点或内点 :内围点会被标记为1,而离群点标记为-1。
离群点检测方法总结
下面的例子展示了二维数据集上不同异常检测算法的特点。数据集包含一种或两种模式(高密度区域),以说明算法处理多模式数据的能力。
对于每个数据集,产生15%的样本作为随机均匀噪声。这个比例是给予OneClassSVM的nu参数和其他离群点检测算法的污染参数的值。由于局部离群因子(LOF)用于离群值检测时没有对新数据应用的预测方法,因此除了局部离群值因子(LOF)外,inliers和离群值之间的决策边界以黑色显示。
sklearn.svm。一个已知的eclasssvm对异常值很敏感,因此在异常值检测方面表现不太好。该估计器最适合在训练集没有异常值的情况下进行新颖性检测。也就是说,在高维的离群点检测,或者在不对嵌入数据的分布做任何假设的情况下,一个类支持向量机可能在这些情况下给出有用的结果,这取决于它的超参数的值。
sklearn.covariance。椭圆包络假设数据是高斯分布,并学习一个椭圆。因此,当数据不是单峰时,它就会退化。但是请注意,这个估计器对异常值是稳健的。
sklearn.ensemble。IsolationForest sklearn.neighbors。LocalOutlierFactor对于多模态数据集似乎表现得相当好。sklearn的优势。第三个数据集的局部离群因子超过其他估计显示,其中两种模式有不同的密度。这种优势是由LOF的局域性来解释的,即它只比较一个样本的异常分数与其相邻样本的异常分数。
最后,对于最后一个数据集,很难说一个样本比另一个样本更反常,因为它们是均匀分布在超立方体中。除了sklearn。svm。有一点过度拟合的支持向量机,所有的估计器都对这种情况给出了合适的解决方案。在这种情况下,明智的做法是更密切地观察样本的异常分数,因为一个好的估计器应该给所有样本分配相似的分数。
虽然这些例子给出了一些关于算法的直觉,但这种直觉可能不适用于非常高维的数据。
最后,请注意,模型的参数在这里是精心挑选的,但在实践中需要进行调整。在没有标记数据的情况下,这个问题是完全无监督的,因此模型的选择是一个挑战。
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Albert Thomas <albert.thomas@telecom-paristech.fr> # License: BSD 3 clause import time import numpy as np import matplotlib import matplotlib.pyplot as plt from sklearn import svm from sklearn.datasets import make_moons, make_blobs from sklearn.covariance import EllipticEnvelope from sklearn.ensemble import IsolationForest from sklearn.neighbors import LocalOutlierFactor print(__doc__) matplotlib.rcParams['contour.negative_linestyle'] = 'solid' # Example settings n_samples = 300 outliers_fraction = 0.15 n_outliers = int(outliers_fraction * n_samples) n_inliers = n_samples - n_outliers # define outlier/anomaly detection methods to be compared anomaly_algorithms = [ ("Robust covariance", EllipticEnvelope(contamination=outliers_fraction)), ("One-Class SVM", svm.OneClassSVM(nu=outliers_fraction, kernel="rbf", gamma=0.1)), ("Isolation Forest", IsolationForest(contamination=outliers_fraction, random_state=42)), ("Local Outlier Factor", LocalOutlierFactor( n_neighbors=35, contamination=outliers_fraction))] # Define datasets blobs_params = dict(random_state=0, n_samples=n_inliers, n_features=2) datasets = [ make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5, **blobs_params)[0], make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5], **blobs_params)[0], make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, .3], **blobs_params)[0], 4. * (make_moons(n_samples=n_samples, noise=.05, random_state=0)[0] - np.array([0.5, 0.25])), 14. * (np.random.RandomState(42).rand(n_samples, 2) - 0.5)] # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 150), np.linspace(-7, 7, 150)) plt.figure(figsize=(len(anomaly_algorithms) * 2 + 3, 12.5)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) plot_num = 1 rng = np.random.RandomState(42) for i_dataset, X in enumerate(datasets): # Add outliers X = np.concatenate([X, rng.uniform(low=-6, high=6, size=(n_outliers, 2))], axis=0) for name, algorithm in anomaly_algorithms: t0 = time.time() algorithm.fit(X) t1 = time.time() plt.subplot(len(datasets), len(anomaly_algorithms), plot_num) if i_dataset == 0: plt.title(name, size=18) # fit the data and tag outliers if name == "Local Outlier Factor": y_pred = algorithm.fit_predict(X) else: y_pred = algorithm.fit(X).predict(X) # plot the levels lines and the points if name != "Local Outlier Factor": # LOF does not implement predict Z = algorithm.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='black') colors = np.array(['#377eb8', '#ff7f00']) plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[(y_pred + 1) // 2]) plt.xlim(-7, 7) plt.ylim(-7, 7) plt.xticks(()) plt.yticks(()) plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'), transform=plt.gca().transAxes, size=15, horizontalalignment='right') plot_num += 1 plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18