京公网安备 11010802034615号
经营许可证编号:京B2-20210330
刚刚接触pandas的朋友,想了解数据结构,就一定要认识DataFrame,接下来给大家详细介绍!
import numpy as np import pandas as pd
data = {"name": ["Jack", "Tom", "LiSa"],
"age": [20, 21, 18],
"city": ["BeiJing", "TianJin", "ShenZhen"]}
print(data)
print("")
frame = pd.DataFrame(data) # 创建DataFrame
print(frame)
print("")
print(frame.index) # 查看行索引
print("")
print(frame.columns) # 查看列索引
print("")
print(frame.values) # 查看值
{'name': ['Jack', 'Tom', 'LiSa'], 'age': [20, 21, 18], 'city': ['BeiJing', 'TianJin', 'ShenZhen']}
age city name
0 20 BeiJing Jack
1 21 TianJin Tom
2 18 ShenZhen LiSa
RangeIndex(start=0, stop=3, step=1)
Index(['age', 'city', 'name'], dtype='object')
[[20 'BeiJing' 'Jack']
[21 'TianJin' 'Tom']
[18 'ShenZhen' 'LiSa']]
方法一: 由字典创建 字典的key是列索引值可以是
1.列表
2.ndarray
3.Series
# 值是ndarray 注意: 用ndarray创建DataFrame值的个数必须相同 否则报错 data2 = {"one": np.random.rand(3), "two": np.random.rand(3) } print(data2) print("") print(pd.DataFrame(data2))
{'one': array([ 0.60720023, 0.30838024, 0.30678266]), 'two': array([ 0.21368784, 0.03797809, 0.41698718])}
one two
0 0.607200 0.213688
1 0.308380 0.037978
2 0.306783 0.416987
# 值是Series--带有标签的一维数组 注意: 用Series创建DataFrame值的个数可以不同 少的值用Nan填充 data3 = {"one": pd.Series(np.random.rand(4)), "two": pd.Series(np.random.rand(5)) } print(data3) print("") df3 = pd.DataFrame(data3) print(df3) print("")
{'one': 0 0.217639
1 0.921641
2 0.898810
3 0.933510
dtype: float64, 'two': 0 0.132789
1 0.099904
2 0.723495
3 0.719173
4 0.477456
dtype: float64}
one two
0 0.217639 0.132789
1 0.921641 0.099904
2 0.898810 0.723495
3 0.933510 0.719173
4 NaN 0.477456
# 值是Series--带有标签的一维数组 注意: 用Series创建DataFrame值的个数可以不同 少的值用Nan填充 data3 = {"one": pd.Series(np.random.rand(4)), "two": pd.Series(np.random.rand(5)) } print(data3) print("") df3 = pd.DataFrame(data3) print(df3) print("")
{'one': 0 0.217639
1 0.921641
2 0.898810
3 0.933510
dtype: float64, 'two': 0 0.132789
1 0.099904
2 0.723495
3 0.719173
4 0.477456
dtype: float64}
one two
0 0.217639 0.132789
1 0.921641 0.099904
2 0.898810 0.723495
3 0.933510 0.719173
4 NaN 0.477456
方法二: 通过二维数组直接创建
data = [{"one": 1, "two": 2}, {"one": 5, "two": 10, "three": 15}] # 每一个字典在DataFrame里就是一行数据
print(data)
print("")
df1 = pd.DataFrame(data)
print(df1)
print("")
df2 = pd.DataFrame(data, index=list("ab"), columns=["one", "two", "three", "four"])
print(df2)
[{'one': 1, 'two': 2}, {'one': 5, 'two': 10, 'three': 15}]
one three two
0 1 NaN 2
1 5 15.0 10
one two three four
a 1 2 NaN NaN
b 5 10 15.0 NaN
方法三: 由字典组成的列表创建 DataFrame
# columns为字典的key index为子字典的key
data = {"Jack": {"age":1, "country":"China", "sex":"man"},
"LiSa": {"age":18, "country":"America", "sex":"women"},
"Tom": {"age":20, "country":"English"}}
df1 = pd.DataFrame(data)
print(df1)
print("")
# 注意: 这里的index并不能给子字典的key(行索引)重新命名 但可以给子字典的key重新排序 若出现原数组没有的index 那么就填充NaN值
df2 = pd.DataFrame(data, index=["sex", "age", "country"])
print(df2)
print("")
df3 = pd.DataFrame(data, index=list("abc"))
print(df3)
print("")
# columns 给列索引重新排序 若出现原数组没有的列索引填充NaN值
df4 = pd.DataFrame(data, columns=["Tom", "LiSa", "Jack", "TangMu"])
print(df4)
Jack LiSa Tom age 1 18 20 country China America English sex man women NaN Jack LiSa Tom sex man women NaN age 1 18 20 country China America English Jack LiSa Tom a NaN NaN NaN b NaN NaN NaN c NaN NaN NaN Tom LiSa Jack TangMu age 20 18 1 NaN country English America China NaN sex NaN women man NaN
方法四: 由字典组成的字典
# columns为字典的key index为子字典的key
data = {"Jack": {"age":1, "country":"China", "sex":"man"},
"LiSa": {"age":18, "country":"America", "sex":"women"},
"Tom": {"age":20, "country":"English"}}
df1 = pd.DataFrame(data)
print(df1)
print("")
# 注意: 这里的index并不能给子字典的key(行索引)重新命名 但可以给子字典的key重新排序 若出现原数组没有的index 那么就填充NaN值
df2 = pd.DataFrame(data, index=["sex", "age", "country"])
print(df2)
print("")
df3 = pd.DataFrame(data, index=list("abc"))
print(df3)
print("")
# columns 给列索引重新排序 若出现原数组没有的列索引填充NaN值
df4 = pd.DataFrame(data, columns=["Tom", "LiSa", "Jack", "TangMu"])
print(df4)
Jack LiSa Tom age 1 18 20 country China America English sex man women NaN Jack LiSa Tom sex man women NaN age 1 18 20 country China America English Jack LiSa Tom a NaN NaN NaN b NaN NaN NaN c NaN NaN NaN Tom LiSa Jack TangMu age 20 18 1 NaN country English America China NaN sex NaN women man NaN
选择行与列
选择列 直接用df["列标签"]
df = pd.DataFrame(np.random.rand(12).reshape(3,4)*100, index = ["one", "two", "three"], columns = ["a", "b", "c", "d"]) print(df) print("") print(df["a"], " ", type(df["a"])) # 取一列 print("") print(df[["a", "c"]], " ", type(df[["a", "c"]])) # 取多列
a b c d one 92.905464 11.630358 19.518051 77.417377 two 91.107357 0.641600 4.913662 65.593182 three 3.152801 42.324671 14.030304 22.138608 one 92.905464 two 91.107357 three 3.152801 Name: a, dtype: float64pandas.core.series.series'=""> a c one 92.905464 19.518051 two 91.107357 4.913662 three 3.152801 14.030304 pandas.core.frame.dataframe'="">
选择行不能通过标签索引 df["one"] 来选择行 要用 df.loc["one"], loc就是针对行来操作的
print(df)
print("")
print(df.loc["one"], " ", type(df.loc["one"])) # 取一行
print("")
print(df.loc[["one", "three"]], " ", type(df.loc[["one", "three"]])) # 取不连续的多行
print("")
a b c d one 92.905464 11.630358 19.518051 77.417377 two 91.107357 0.641600 4.913662 65.593182 three 3.152801 42.324671 14.030304 22.138608 a 92.905464 b 11.630358 c 19.518051 d 77.417377 Name: one, dtype: float64pandas.core.series.series'=""> a b c d one 92.905464 11.630358 19.518051 77.417377 three 3.152801 42.324671 14.030304 22.138608 pandas.core.frame.dataframe'="">
loc支持切片索引--针对行 并包含末端 df.loc["one": "three"]
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100, index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") print(df.loc["one": "three"]) print("") print(df[: 3]) # 切片表示取连续的多行(尽量不用 免得混淆)
a b c d
one 65.471894 19.137274 31.680635 41.659808
two 31.570587 45.575849 37.739644 5.140845
three 54.930986 68.232707 17.215544 70.765401
four 45.591798 63.274956 74.056045 2.466652
a b c d
one 65.471894 19.137274 31.680635 41.659808
two 31.570587 45.575849 37.739644 5.140845
three 54.930986 68.232707 17.215544 70.765401
a b c d
one 65.471894 19.137274 31.680635 41.659808
two 31.570587 45.575849 37.739644 5.140845
three 54.930986 68.232707 17.215544 70.765401
iloc也是对行来操作的 只不过把行标签改成了行索引 并且是不包含末端的
print(df)
print("")
print(df.iloc[0]) # 取一行
print("")
print(df.iloc[[0,2]]) # 取不连续的多行
print("")
print(df.iloc[0:3]) # 不包含末端
a b c d
one 65.471894 19.137274 31.680635 41.659808
two 31.570587 45.575849 37.739644 5.140845
three 54.930986 68.232707 17.215544 70.765401
four 45.591798 63.274956 74.056045 2.466652
a 65.471894
b 19.137274
c 31.680635
d 41.659808
Name: one, dtype: float64
a b c d
one 65.471894 19.137274 31.680635 41.659808
three 54.930986 68.232707 17.215544 70.765401
a b c d
one 65.471894 19.137274 31.680635 41.659808
two 31.570587 45.575849 37.739644 5.140845
three 54.930986 68.232707 17.215544 70.765401
布尔型索引
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100, index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") d1 = df >50 # d1为布尔型索引 print(d1) print("") print(df[d1]) # df根据d1 只返回True的值 False的值对应为NaN print("")
a b c d
one 91.503673 74.080822 85.274682 80.788609
two 49.670055 42.221393 36.674490 69.272958
three 78.349843 68.090150 22.326223 93.984369
four 79.057146 77.687246 32.304265 0.567816
a b c d
one True True True True
two False False False True
three True True False True
four True True False False
a b c d
one 91.503673 74.080822 85.274682 80.788609
two NaN NaN NaN 69.272958
three 78.349843 68.090150 NaN 93.984369
four 79.057146 77.687246 NaN NaN
选取某一列作为布尔型索引 返回True所在行的所有列 注意: 不能选取多列作为布尔型索引
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100, index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"], dtype=np.int64) print(df) print("") d2 = df["b"] > 50 print(d2) print("") print(df[d2])
a b c d
one 27 18 47 61
two 26 35 16 78
three 80 98 94 41
four 85 3 47 90
one False
two False
three True
four False
Name: b, dtype: bool
a b c d
three 80 98 94 41
选取多列作为布尔型索引 返回True所对应的值 False对应为NaN 没有的列全部填充为NaN
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100, index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"], dtype=np.int64) print(df) print("") d3 = df[["a", "c"]] > 50 print(d3) print("") print(df[d3])
a b c d
one 49 82 32 39
two 78 2 24 84
three 6 84 84 69
four 21 89 16 77
a c
one False False
two True False
three False True
four False False
a b c d
one NaN NaN NaN NaN
two 78.0 NaN NaN NaN
three NaN NaN 84.0 NaN
four NaN NaN NaN NaN
多重索引
print(df)
a b c d one 49 82 32 39 two 78 2 24 84 three 6 84 84 69 four 21 89 16 77
print(df["a"].loc[["one", "three"]]) # 取列再取行
print("")
print(df[["a", "c"]].iloc[0:3])
one 49
three 6
Name: a, dtype: int64
a c
one 49 32
two 78 24
three 6 84
print(df.loc[["one", "three"]][["a", "c"]]) # 取行再取列
a c one 49 32 three 6 84
print(df > 50)
print("")
print(df[df>50])
print("")
print(df[df>50][["a","b"]])
a b c d
one False True False False
two True False False True
three False True True True
four False True False True
a b c d
one NaN 82.0 NaN NaN
two 78.0 NaN NaN 84.0
three NaN 84.0 84.0 69.0
four NaN 89.0 NaN 77.0
a b
one NaN 82.0
two 78.0 NaN
three NaN 84.0
four NaN 89.0
DataFrame基本技巧
import numpy as np import pandas as pd
arr = np.random.rand(16).reshape(8, 2)*10
# print(arr)
print("")
print(len(arr))
print("")
df = pd.DataFrame(arr, index=[chr(i) for i in range(97, 97+len(arr))], columns=["one", "two"])
print(df)
8
one two
a 2.129959 1.827002
b 8.631212 0.423903
c 6.262012 3.851107
d 6.890305 9.543065
e 6.883742 3.643955
f 2.740878 6.851490
g 6.242513 7.402237
h 9.226572 3.179664
查看数据
print(df)
print("")
print(df.head(2)) # 查看头部数据 默认查看5条
print("")
print(df.tail(3)) # 查看末尾数据 默认查看5条
one two
a 2.129959 1.827002
b 8.631212 0.423903
c 6.262012 3.851107
d 6.890305 9.543065
e 6.883742 3.643955
f 2.740878 6.851490
g 6.242513 7.402237
h 9.226572 3.179664
one two
a 2.129959 1.827002
b 8.631212 0.423903
one two
f 2.740878 6.851490
g 6.242513 7.402237
h 9.226572 3.179664
转置
print(df)
one two a 2.129959 1.827002 b 8.631212 0.423903 c 6.262012 3.851107 d 6.890305 9.543065 e 6.883742 3.643955 f 2.740878 6.851490 g 6.242513 7.402237 h 9.226572 3.179664
print(df.T)
a b c d e f g \
one 2.129959 8.631212 6.262012 6.890305 6.883742 2.740878 6.242513
two 1.827002 0.423903 3.851107 9.543065 3.643955 6.851490 7.402237
h
one 9.226572
two 3.179664
添加与修改
df = pd.DataFrame(np.random.rand(16).reshape(4,4),index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") df.loc["five"] = 100 # 增加一行 print(df) print("") df["e"] = 10 # 增加一列 print(df) print("") df["e"] = 101 # 修改一列 print(df) print("") df.loc["five"] = 111 # 修改一行 print(df) print("")
a b c d
one 0.708481 0.285426 0.355058 0.990070
two 0.199559 0.733047 0.322982 0.791169
three 0.198043 0.801163 0.356082 0.857501
four 0.430182 0.020549 0.896011 0.503088
a b c d
one 0.708481 0.285426 0.355058 0.990070
two 0.199559 0.733047 0.322982 0.791169
three 0.198043 0.801163 0.356082 0.857501
four 0.430182 0.020549 0.896011 0.503088
five 100.000000 100.000000 100.000000 100.000000
a b c d e
one 0.708481 0.285426 0.355058 0.990070 10
two 0.199559 0.733047 0.322982 0.791169 10
three 0.198043 0.801163 0.356082 0.857501 10
four 0.430182 0.020549 0.896011 0.503088 10
five 100.000000 100.000000 100.000000 100.000000 10
a b c d e
one 0.708481 0.285426 0.355058 0.990070 101
two 0.199559 0.733047 0.322982 0.791169 101
three 0.198043 0.801163 0.356082 0.857501 101
four 0.430182 0.020549 0.896011 0.503088 101
five 100.000000 100.000000 100.000000 100.000000 101
a b c d e
one 0.708481 0.285426 0.355058 0.990070 101
two 0.199559 0.733047 0.322982 0.791169 101
three 0.198043 0.801163 0.356082 0.857501 101
four 0.430182 0.020549 0.896011 0.503088 101
five 111.000000 111.000000 111.000000 111.000000 111
删除 del(删除行)/drop(删除列 指定axis=1删除行)
df = pd.DataFrame(np.random.rand(16).reshape(4,4),index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") del df["a"] # 删除列 改变原数组 print(df)
a b c d
one 0.339979 0.577661 0.108308 0.482164
two 0.374043 0.102067 0.660970 0.786986
three 0.384832 0.076563 0.529472 0.358780
four 0.938592 0.852895 0.466709 0.938307
b c d
one 0.577661 0.108308 0.482164
two 0.102067 0.660970 0.786986
three 0.076563 0.529472 0.358780
four 0.852895 0.466709 0.938307
df = pd.DataFrame(np.random.rand(16).reshape(4,4),index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") d1 = df.drop("one") # 删除行 并返回新的数组 不改变原数组 print(d1) print("") print(df)
a b c d
one 0.205438 0.324132 0.401131 0.368300
two 0.471426 0.671785 0.837956 0.097416
three 0.888816 0.451950 0.137032 0.568844
four 0.524813 0.448306 0.875787 0.479477
a b c d
two 0.471426 0.671785 0.837956 0.097416
three 0.888816 0.451950 0.137032 0.568844
four 0.524813 0.448306 0.875787 0.479477
a b c d
one 0.205438 0.324132 0.401131 0.368300
two 0.471426 0.671785 0.837956 0.097416
three 0.888816 0.451950 0.137032 0.568844
four 0.524813 0.448306 0.875787 0.479477
df = pd.DataFrame(np.random.rand(16).reshape(4,4),index=["one", "two", "three", "four"], columns=["a", "b", "c", "d"]) print(df) print("") d2 = df.drop("a", axis=1) # 删除列 返回新的数组 不会改变原数组 print(d2) print("") print(df)
a b c d
one 0.939552 0.613218 0.357056 0.534264
two 0.110583 0.602123 0.990186 0.149132
three 0.756016 0.897848 0.176100 0.204789
four 0.655573 0.819009 0.094322 0.656406
b c d
one 0.613218 0.357056 0.534264
two 0.602123 0.990186 0.149132
three 0.897848 0.176100 0.204789
four 0.819009 0.094322 0.656406
a b c d
one 0.939552 0.613218 0.357056 0.534264
two 0.110583 0.602123 0.990186 0.149132
three 0.756016 0.897848 0.176100 0.204789
four 0.655573 0.819009 0.094322 0.656406
排序
根据指定列的列值排序 同时列值所在的行也会跟着移动 .sort_values(['列'])
# 单列 df = pd.DataFrame(np.random.rand(16).reshape(4,4), columns=["a", "b", "c", "d"]) print(df) print("") print(df.sort_values(['a'])) # 默认升序 print("") print(df.sort_values(['a'], ascending=False)) # 降序
a b c d
0 0.616386 0.416094 0.072445 0.140167
1 0.263227 0.079205 0.520708 0.866316
2 0.665673 0.836688 0.733966 0.310229
3 0.405777 0.090530 0.991211 0.712312
a b c d
1 0.263227 0.079205 0.520708 0.866316
3 0.405777 0.090530 0.991211 0.712312
0 0.616386 0.416094 0.072445 0.140167
2 0.665673 0.836688 0.733966 0.310229
a b c d
2 0.665673 0.836688 0.733966 0.310229
0 0.616386 0.416094 0.072445 0.140167
3 0.405777 0.090530 0.991211 0.712312
1 0.263227 0.079205 0.520708 0.866316
根据索引排序 .sort_index()
df = pd.DataFrame(np.random.rand(16).reshape(4,4), index=[2,1,3,0], columns=["a", "b", "c", "d"]) print(df) print("") print(df.sort_index()) # 默认升序 print("") print(df.sort_index(ascending=False)) # 降序
a b c d
2 0.669311 0.118176 0.635512 0.248388
1 0.752321 0.935779 0.572554 0.274019
3 0.701334 0.354684 0.592998 0.402686
0 0.548317 0.966295 0.191219 0.307908
a b c d
0 0.548317 0.966295 0.191219 0.307908
1 0.752321 0.935779 0.572554 0.274019
2 0.669311 0.118176 0.635512 0.248388
3 0.701334 0.354684 0.592998 0.402686
a b c d
3 0.701334 0.354684 0.592998 0.402686
2 0.669311 0.118176 0.635512 0.248388
1 0.752321 0.935779 0.572554 0.274019
0 0.548317 0.966295 0.191219 0.307908
df = pd.DataFrame(np.random.rand(16).reshape(4,4), index=["x", "z", "y", "t"], columns=["a", "b", "c", "d"]) print(df) print("") print(df.sort_index()) # 根据字母顺序表排序
a b c d
x 0.717421 0.206383 0.757656 0.720580
z 0.969988 0.551812 0.210200 0.083031
y 0.956637 0.759216 0.350744 0.335287
t 0.846718 0.207411 0.936231 0.891330
a b c d
t 0.846718 0.207411 0.936231 0.891330
x 0.717421 0.206383 0.757656 0.720580
y 0.956637 0.759216 0.350744 0.335287
z 0.969988 0.551812 0.210200 0.083031
df = pd.DataFrame(np.random.rand(16).reshape(4,4), index=["three", "one", "four", "two"], columns=["a", "b", "c", "d"]) print(df) print("") print(df.sort_index()) # 根据单词首字母排序
a b c d
three 0.173818 0.902347 0.106037 0.303450
one 0.591793 0.526785 0.101916 0.884698
four 0.685250 0.364044 0.932338 0.668774
two 0.240763 0.260322 0.722891 0.634825
a b c d
four 0.685250 0.364044 0.932338 0.668774
one 0.591793 0.526785 0.101916 0.884698
three 0.173818 0.902347 0.106037 0.303450
two 0.240763 0.260322 0.722891 0.634825
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27